

Low-background technique and physics at BNO INR RAS

Vladimir Kazalov

Baksan Neutrino Observatory INR RAS

vvk1982@mail.ru kazalov@inr.ru

7th International Conference on Particle Physics and Astrophysics, Moscow, MEPhI, 2024

BNO INR RAS location: vicinity of Mount Elbrus, in the Baksan valley of Kabardino-Balkaria (Russia).

One of the areas of research is geophysics Monitoring of the regional geodynamics of the Elbrus region in order to assess the risks of possible natural disasters.

~ 1 muon/(m²·10 h) Large suppression of the cosmic rays background

Underground Laboratories of the BNO INR RAS

Low-background concrete at GGNT laboratory

- Low-radioactive concrete is a key and unique feature of GGNT underground lab: it serves as radiation shielding and structural reinforcement of rocks (at such a depth it is a prerequisite).
- Total volume of low background concrete is 2200 m³, the thickness is 70 cm, total weight of frameworks made of steel siding is 370 t.
- Neutron flux is 3,8*10⁻⁶ neutrons/cm²/sec
- Gamma flux (0,2 3,2 MeV) is 15÷16 times less compare with the standard rock

Sketch of GGNT laboratory (scale 1:1000)

Main hall of 7 200 m³ lined with 70 cm of low background concrete Overburden: 2000 m (4.8 km w.e.) Radon: 40 Bq/m³ F_n (>1 MeV) = 1.4 x 10⁻³ m⁻²s⁻¹ F_n (>3 MeV) = 6.28±2.2 x 10⁻⁴ m⁻²s⁻¹

- 1- Chamber of firefighting materials and equipment
- 2- Chamber of a car U-turn
- 3- Chamber of electric substation
- 4- Chamber of Air conditioning
- 5- Reload chamber
- 6- Main hall
- 7- Chamber of technical equipment
- 8- Chamber of exhaust ventilation
- Emergency chamber
 (10 persons x 2 weeks)

General view of GGNT laboratory - 2

Depth – 4700 m.w.e ((3.03±0.10)·10⁻⁹ μ cm⁻²·s⁻¹)
Size – 60m×10m×12m

Ga solar neutrino measurements

 10^{36} atoms of the neutrino absorbing isotope).

Реакторный зал ГГНТ

Gallium anomaly (GA)

GA – low neutrino capture rate in 4 calibration experiments of solar detectors of solar neutrinos SAGE and GALLEX with sources ⁵¹Cr and ³⁷Ar

The BEST experiment confirmed the GA at a higher level of significance

	SAGE, m(Ga) = 13.1 m	GALLEX, m($GALLEX, m(Ga) = 30 m \qquad BEST, m(Ga) = 4$		
Source	⁵¹ Cr	³⁷ Ar	⁵¹ Cr	⁵¹ Cr	⁵¹ Cr	
	0.516	0.409	1.714	1.868	3.414	
Activity, MCi						
$R = p_{\text{measur}}/p_{\text{Expec}}$	0.95 ± 0.12	0.79 ± 0.10	0.953 ± 0.11	0.812 ± 0.11	0.766 ± 0.05	0.791 ± 0.05

The total result $R_0 \pm \sigma_0 = 0.80 \pm 0.05$ (5.7%) GA is confirmed at the level of > 4σ

vvgor_gfb1@mail.ru

The total result $R_0 = 0.80 \pm 0.05$ (5.7%) Ga anomaly confirmed at the level of > 4 σ The hypothesis of sterile neutrinos remains relevant The parameter Δm^2 remains unknown (> 1 eV²)

vvgor_gfb1@mail.ru

Explanation of Gallium anomaly (GA)

- 1) Statistical fluctuation
- 2) Systematics of experiments
- 3) Overestimated neutrino capture cross section in Ga
- 4) New physics
- 1) After the BEST experiment, the probability of stat. fluctuations is suppressed at a level of $> 4\sigma$
- 2) Systematics verified by many independent experiments
- *3)* The neutrino capture cross section has been measured at accelerators and has been calculated independently by several authors.
- 4) The main hypothesis from new physics is short-baseline oscillations into sterile states, which also explain anomalies obtained in other experiments LSND, MiniBooNE, short-baseline reactor antineutrino measurements

$$P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 (1.27 \frac{\Delta m^2 (eV^2) \cdot L(m)}{E_v (MeV)})$$

The oscillation parameters (Δm^2 , $sin^2 2\theta$) are currently the subject of searches in short-baseline neutrino experiments

V. Kazalov "Low-background technique and physics at BNO INR RAS"

12

vvgor gfb1@mail.ru

The new BEST-2 experiment

A detailed study of GA The main hypothesis is sterile oscillations But also determine the dependence of GA on neutrino energy

Changes compared to BEST:

- 1) A ⁵⁸Co source with a neutrino energy of 1500 keV, 2 times higher than that of ⁵¹Cr (750 keV)
- 2) Three independent target zones a more distance-sensitive target (there were 2 zones)

For the oscillation hypothesis:

- an increase in neutrino energy increases the width of the sensitivity region in terms of the parameter Δm^2

- increasing the number of target zones gives an unambiguous determination of the parameter Δm^2 in the sensitivity region

vvgor_gfb1@mail.ru

Within the sensitivity regions, the oscillation parameters can be defined:

within the boundaries of the 2σ region – with a significance level of 3σ , i.e. the parameters found in the analysis will coincide with the real ones at a significance level of 3σ

Thus, if the oscillation parameters coincide with any of the BF parameters of the Ga source experiments, as well as Neutrino-4, then they will be determined in the new experiment.

The dependence of capture rates in three zones of the Ga target on the parameter Δm^2 for an amplitude of $\sin^2\theta = 0.30$ is shown.

In the region of sensitivity to the determination of oscillation parameters, we obtain an unambiguous definition of the parameter Δm^2

The ratio of capture rates in different target zones:

Source production

In a fast neutron reactor:

Cross section of (p,n) reaction $\sigma = 0.1439$ barn ⁵⁸Ni in natural Ni 68.27 %

Production of ⁵⁸Co activity in a fast neutron flux $\Phi = 2 \cdot 10^{15} \text{ cm}^{-2} \text{s}^{-1}$ from 15 kg of natural nickel

$$^{58}_{28}Ni(n,p)^{58}_{27}Co$$

Fast neutron fluxes in reactors:

БОР60 (НИИАР) 3.7·10¹⁵ ст⁻²s⁻¹ БН600 2.3·10¹⁵ ст⁻²s⁻¹

> Activity A = 400 kCican be accumulated in ~70 days

At the same time, ${}^{60}Co$ is produced from ${}^{60}Ni(\sigma = 0.040 \text{ barn})$ The activity of ${}^{60}Co$ will be ~ 250 times less

Density Ni - $\rho = 8.90 \text{ g/cm3}$ Volume of 15 kg Ni - V = 1.7 l Volume of ⁵¹Cr source in BEST - V = 0.6 l

vvgor_gfb1@mail.ru

Gamma line of ⁵⁸*Co:*

E _γ , keV	511	810.76	864	1674.7
Branching ratio f, %	29.88	99.44	0.70	0.528

Heat dissipation: ~ 1 MeV/decay ${}^{58}Co = 593 \text{ W} / 100 \text{ kCi} = 2.4 \text{ kW} / 400 \text{ kCi}$ The heat dissipation in the BEST was 740 W / 3.4 MCi

For safe operation, the source will be surrounded by passive shield: (3 cm W + 10 cm Pb) - 2.3 hours of operation at a distance of 1 m from the source

Radioactive impurities contribute to

- *heat generation (and error in measuring the source activity)*
- background radiation, which must be protected from

Enrichment of the source material significantly reduces the amount of impurities: The impurities in the source in BEST contributed to the heat release in the order of $5 \cdot 10^{-6}$

Large-volume scintillation detector (~10 kt) at the BNO for recording natural fluxes of low-energy neutrinos (up to 100 MeV)

- Investigation of the spectrum of solar neutrinos and accurate measurement of neutrinos from CNO reactions;
- The study of the antineutrino flux emitted by uranium and thorium decay products (geoneutrinos) inside the Earth in order to determine the radiogenic component of the Earth's heat flux.
- Estimating the potassium content within the Earth using the electron spectrum from the recoil of neutrinos scattering on electrons, similar to solar neutrinos;
- Testing the hypothesis of a nuclear fission chain reaction taking place in the core of the Earth by looking for the "georeactor" antineutrino flux.
- Studying the dynamics of a supernova explosion by recording the intensity and spectrum of a neutrino burst (in the case of a burst);
- The search for the anisotropic flux of antineutrinos that has accumulated in the universe over millions of years due to gravitational collapses of the nuclei of massive stars and the formation of neutron stars and black holes.
- Measurement of the total flux of antineutrinos from all nuclear reactors on Earth and study of their oscillations.

Laboratory of Low Background Research

The main tasks of the laboratory :

- Experiments on the search for double beta decay (2K- capture ⁷⁸Kr, ¹²⁴Xe, AMoRE, GERDA)
- Measuring the radioactivity of materials
- Radon measurement (monitoring)
- Search for rare processes and decays

- НИзкофоновая КАмера (НИКА) low-background chamber, at a distance of 385 meters from the entrance (660 m w. e.), cosmic rays are reduced by a factor of ~ 2×10³ times
- 2) КАмера ПРецизионных ИЗмерений (КАПРИЗ) low-background chamber, at a distance of 620 meters from the entrance (1000 m w. e.), cosmic rays are reduced by a factor of ~ 8×10³ times
- 3) Deep Underground Low-background laboratory (DULB-4900) at a distance of 3670 meters from the entrance (4900 m w.e.), cosmic rays are reduced by a factor of ~ 1×10⁷ times
- 4) Separate rooms: clean zone (class >600), instrumental rooms, rooms with HPGe and NaI detectors

Characteristics of deep underground low-background laboratory (DULB-4900)

Crystal NaI(Tl) d=150 mm, h=150 mm, m=9.72 kg

V. Kazalov "Low-background technique and physics at BNO INR RAS"

Deep Underground Low-Background laboratory (DULB-4900)

The laboratory is located at a distance of 3700 m from the main entrance of the observatory tunnel in the hall with dimensions $\sim 6 \times 6 \times 40$ m³. Thickness of the mountain rock over DULB corresponds to 4900 m w.e. and this deep location provides the cosmic ray flux reduction with the factor of about 10⁷.

Schematic view of DULB-4900: A1-A8 - counting chambers; B - air condition equipment; C - engineering and processing facility; D - buffer area; E - entrance; F - bathroom; G - electric-driven wagon railway; H - fire-fighting equipment; I - electrical and process equipment; J - emergency exits.

Ju.M. Gavriljuk, A.M. Gangapshev, A.M. Gezhaev, V.V. Kazalov, V.V. Kuzminov, S.I. Panasenko, S.S. Ratkevich, A.A. Smolnikov, S.P. Yakimenko "Working characteristics of the New Low-Background Laboratory (DULB-4900)". Nuclear Instruments and Methods in Physics Research A 729 (2013) pp.576-580

V. Kazalov "Low-background technique and physics at BNO INR RAS"

Ultra-low background gamma-spetrometer «CHEΓ»

Characteristics of HPGe detector

Detector	Ge-Nat
Type of crystal	Coaxial
Type of semiconductor	P-type
Mass, g	1056
External diameter, mm	64
Height, mm	67
The thickness of the dead layer, mm	≈1
The effective mass, g	952
The wall thickness of the cryostat, mm	1
The ratio Peak / Compton (1332 keV)	54.8
The energy resolution, keV (1332 keV) at technical passport	2.32

Low-background shield is consists of: 80 mm of polyethylene, 1 mm of cadmium (Cd), 150 mm of lead (Pb) and 180 mm of copper (Cu)

Candidates for measurement of $2\nu 2\beta^+$ -decay

Transition	Е _{2к} , MeV	Isotopic abundance, %
⁷⁸ Kr→ ⁷⁸ Se	2.867	0.35
⁹⁶ Ru→ ⁹⁶ Mo	2.724	5.52
$^{106}Cd \rightarrow ^{106}Pd$	2.771	1.25
124 Xe \rightarrow 124 Te	2.866	0.10
¹³⁰ Ba→ ¹³⁰ Xe	2.610	0.11
¹³⁶ Ce→ ¹³⁶ Ba	2.401	0.20

 $\begin{array}{l} (Z, A) \rightarrow (Z - 2, A) + 2\beta^{+}(+ 2\nu_{e}), \\ e_{b} + (Z, A) \rightarrow (Z - 2, A) + \beta^{+}(+ 2\nu_{e}), \\ e_{b} + e_{b} + (Z, A) \rightarrow (Z - 2, A) + 2\nu_{e} + 2X, \\ e_{b} + e_{b} + (Z, A) \rightarrow (Z - 2, A)^{*} \rightarrow (Z - 2, A) + \gamma + 2X. \end{array}$

V. Kazalov "Low-background technique and physics at BNO INR RAS"

2K-capture Xe-124

 ${}^{124}_{54} Xe \xrightarrow{2e_k} {}^{124}_{52} Te^{**} + 2\nu (2,865(7) MeV)$

 K_{ab} = 31.8 keV E_{2k} = 64.46 keV ω_k = 0.857 - characteristic quantum ω_e = 0.142 - Auger electron

> Search area of 2K(2v)-capture of Xe-124 from 64.46-13= 51.46(52) to 64.46+13=77.46

The energies of characteristic photons and an Auger-electron in 2K-capture are determined under the assumption that the filling of the double vacancy of K-shell in one atom is identical to filling two K-shell vacancies, each in a separate atom; the total energy release being 64.46 keV.

The probability of the emission of two characteristic X-ray photons and auger electron equal to 73.4%.

PSD

86.5% of KX rays (28.802 keV) are absorbed at the distance of 50 mm from their origin. Extrapolated range for Auger electrons (5 keV) is 0.5 mm. Therefore electrons are absorbed almost immediately while X-rays pass far away, creating three separate clusters of ionization. Information on the primary charge distribution along counter radius is fully represented in the pulse shape.

Large low-background 10-liter copper proportional counter (CPC)

Comparison with previous experimental results and theoretical estimates

Experiment	2K-capture
XENON 1T (E. Aprile <i>et al.</i> Phys. Rev. C 106 , 024328)	1.8×10 ²² лет
XMASS-I (K. Abe, K. Hiraide, K. Ichimura, 2016r)	≥ 4.7×10 ²¹ лет
BNO INR RAS (2014r)	≥4.67×10 ²⁰ лет
BNO INR RAS (2015r)	≥2.5×10²¹ лет
BNO INR RAS (2016r)	≥ 4.6 × 10 ²¹ лет
BNO INR RAS (2017r)	≥ 7×10 ²¹ лет

Theoretical predictions for 2e(2v)-capture ¹²⁴Xe

2EC(2ν)×10 ²¹ yr.	Authors
2.9-7.3	M. Hirsch et al., Z. Phys. A 1999
7.0	O.A. Rumyantsev, M.H. Urin Phys. Lett.B 1998
7.1-18	S. Singh et al., Euro. Phys. J. A 2007
0.4-8.8	J. Suhonen Journal of Physics G 2013
61-155	A. Shukla, P.K. Raina Journal of Physics G 2007

"Axions are among the most fascinating particles on the long list of those proposed but not yet observed or ruled out. Their existence would provide an elegant resolution of the strong CP problem. Even more exciting is the possibility that the missing mass needed to close the universe is composed of axions, and that axions are «cold dark matter» which seems to be necessary for galaxy formation. ..."

Mark Srednicki, "Axion couplings to matter (I). CP-conserving parts", Nucl. Phys. B260 (1985) 689-700.

"...the composite axion is a particular example of a "hadronic" axion, resulting from a theory where only exotic fermions carry $U(1)_{PQ}$ charges. Hadronic axions don't couple to leptons, which are neutral under $SU(3)xU(1)_{PQ}$. Nor do they couple to heavy quarks, which are integrated out of the theory above 1GeV, where QCD gets strong. Hadronic axions will still couple to nucleons as well as to photons. ..."

David B. Kaplan, "Opening the axion window", Nucl. Phys. B260 (1985) 215-226.

"The most attractive solution of the strong CP problem is to introduce the Peccei-Quinn global symmetry which is spontaneously broken at energy scale f_a . The original axion model assumed that f_a is equal to the electroweak scale. Although it has been experimentally excluded, variant "invisible" axion models are still viable in which f_a is assumed to be very large. ... Such models are referred to as hadronic and Dine-Fischler-Srednicki-Zhitnitskii axions." Shigetaka Moriyama, "Proposal to search for a monochromatic component of solar axions using ⁵⁷Fe", Phys. Rev. Lett. v.75

Nº8 (1995) 3222-3225.

SOLAR AXIONS AND HOW TO DETECT THEM?

Stars could be intense **sources of axions**, thanks to a number of processes:

- Nuclear reactions of pp-chain (g_{AN})
- Thermal excitation of nuclei (g_{AN})
- Primakoff effect $(g_{A\gamma})$
- Axion bremsstrahlung (g_{Ae})
- Compton-like process (g_{Ae})
- Atomic de-excitation/recombination (g_{Ae})

Due to the Sun's proximity to Earth the stellar **axion flux** at the Earth's surface will be **dominated by solar axions**.

Axions could be **detected** through reaction of **resonant absorption** by atomic nucleus (g_{AN}) . The **relaxation** of excited nuclei would produce γ -quanta and electrons, detectable by conventional means. Particular isotopes (⁵⁷Fe, ¹⁶⁹Tm, ⁸³Kr) possess low-energy nuclear transitions of M1-type, which allow for testing for axion masses in 1 - 10 keV range, consistent with the expected solar flux. For our experiment ⁸³Kr target with 9.4 keV transition was used.

BAKSAN UNDERGROUND FACILITY AND EXPERIMENTAL SETUP

The experimental setup was located in the lowbackground laboratory of Baksan underground facility (4900 m. w. e). The large gas proportional counter consisted of copper cylinder $(l = 735 \text{ mm}, \emptyset = 137 - 150 \text{ mm})$ and was filled with 57 g of ⁸³Kr (99.9% enrichment). The energy spectrum was acquired over 777 days of live-time. Since there was no visible peak in the region of interest, the upper limit on the amount of axion events was found to be $S_{lim} \leq 140$ at 90% c. l.

ACHIEVED LIMITS ON AXION COUPLINGS

Flux of solar axions due-to Primakoff effect

V. Anastassopoulos et al. (CAST Collab.), Nat. Phys.
 584 (2017); arXiv:1705.02290v2
 K. van Bibber, P. M. McIntyre, D. E. Morris, and
 G. Raffelt, Phys. Rev. D 39, 2089 (1989)

Rate of axion absorption by the ⁸³Kr nuclei:

$$R_{A} = 4.53 \times 10^{27} g_{AY}^{2} (\omega_{A} / \omega_{Y})$$

6.70×10²⁷ $g_{AY}^{2} (g_{AN}^{3} - g_{AN}^{0})^{2} (p_{A} / p_{Y})^{3}$

In case of hadronic axion it gives:

$$R_A = 1.56 \times 10^{-7} m_A^4 (p_A / p_\gamma)^3$$

Fig. 1. (Color online) Energy spectrum of axions formed through the thermal-photon conversion in the solar-

plasma field, derived for $g_{A\gamma} = 10^{-10} \text{ GeV}^{-1}$. The inset

23.10.2024 shows the scheme of ⁸³Kr levels.

V. Kazalov "Low-background technique and physics at BNO INR RAS"

Result of measurements

axions from ⁸³Kr:

$$\frac{\omega_A}{\omega_{\gamma}} \leq 9.9 \times 10^{-13}$$

 $|g_{AN}^3 - g_{AN}^0| \leq 8.3 \times 10^{-7}$

 $m_A \leq 64 \, eV$

axions due-to Primakoff effect:

$$|g_{AY}(g_{AY}^{3}-g_{AY}^{0})| \leq 7.89 \times 10^{-16}$$
,

$$|g_{AY} \times m_{A}| \leq 6.16 \times 10^{-8}$$
,

AMoRE collaboration

10 Countries, 26 Institutions - Korea, Germany, Ukraine, USA, Russia, China, Thailand, Indonesia, India, Pakistan

The AMORE-experiment's challenge

The goal of the AMoRE (Advanced Mo-base Rare process Experiment) is to search for neutrinoless double beta decay ($0\nu\beta\beta$) of ¹⁰⁰Mo using Mo-based scintillating crystals and low-temperature sensors.

Principle of AMoRE detector

Time (ms)

Scintillating crystal

- ^{48depl}Ca¹⁰⁰MoO₄
- ¹⁰⁰Mo enriched: > 95 %
- 48 Ca depleted: < 0.001 %

MMC & SQUID

- MMC: Metallic Magnetic Calorimeter
- Magnetization changes with temperature.
- Magnetization change (flux) can be measured as a voltage by SQUID

Detection process:

Energy \rightarrow Temperature \rightarrow Magnetization \rightarrow Magnetic flux \rightarrow **Voltage**

AMoRE project

Этапы эксперимента	Pilot	AMoRE-I	AMoRE-II	
Crystal assembly				
Crystals	^{48depl} Ca ¹⁰⁰ MoO ₄ (CMO)	^{48depl} Ca ¹⁰⁰ MoO ₄ , ^{nat} Li ₂ ¹⁰⁰ MoO ₄ (LMO)	^{nat} Li ₂ ¹⁰⁰ MoO ₄	
Crystal/Mass	6/1,9 kg	18/6,2 kg	~ 400/150 kg	
Background Goal (counts/keV/kg/yr.)	10 -1	< 10 ⁻²	< 10 ⁻⁴	
Sensitivity , $T_{1/2}(yr.)$	1,0x10 ²³	7,0x10 ²⁴	8,0x10 ²⁶	
Sensitivity, neutrino mass m _{ββ} (мэВ)	1200-2100	140-270	13-25	
Scheduled Dates	2015-2018	2020-2022	2024-2027	
Location	Yangyang Underground Laboratory (Y2L), S. Korea	Y2L	Yemi Underground Laboratory (YemiLab), S. Korea	

Background spectra AMoRE-I after alpha background rejection

• 17 crystals excluding one LMO (for very poor β/α discrimination power) Exposure = 8.02 kgXMoO4 • yr = 3.88 kg100Mo • yr.

CMO has higher alpha backgrounds and rejection power is high

LMO has lower alpha backgrounds and rejection power is low

Live exposure	Bkg. @ $Q_{\beta\beta}$ / ckky
Total (8.02 kg _{XMoO4} yr)	0.040 ± 0.004
СМО (6.19 kg _{XMoO4} yr)	0.039 ± 0.004
LMO (1.83 kg _{XMoO4} yr)	0.045±0.009

Yeongduk Kim (CUP IBS) NPB 2024, Hong Kong

23.10.2024

Current best limit 1.8× 10^{24} years by CUPID-Mo

¹⁰⁰Mo 0v $\beta\beta$ limit from AMoRE-I: $T_{1/2}^{0\nu\beta\beta} > 3.4 \times 10^{24}$ years

Limits & Sensitivities

• AMoRE-I result corresponds to $m_{\beta\beta} < 200-340 \text{ meV}$

Yoomin Oh (CUP IBS) • AMoRE-II for $T_{1/2}^{0\nu\beta\beta} > 5 \times 10^{26}$ years by 100 kg of ¹⁰⁰Mo × 5 years running. Neutrino 2022, Seoul

23.10.2024

Underground Laboratories of the BNO INR RAS

Two options for the development of cryogenic experiments at the BNO INR RAS are considered:

1) Liquefied noble gas detectors - xenon, argon.

2) Detectors based on scintillation crystals cooled to a temperature of 10 mK operating in the bolometer mode.

Liquefied noble gases (large sensing volume, easy to scale) Two-Phase Emission Detector:

search for dark matter, search for axions, coherent elastic neutrino-nucleus scattering, detection of solar neutrinos (pp, 8B), SN-neutrinos

Bolometers (high energy resolution and registration efficiency)

study of 0vββ - decay of isotopes¹⁰⁰Mo, ¹³⁰Te, ⁴⁸Ca, ⁸²Se, ¹¹⁶Cd, ¹²⁴Sn search for dark matter, axions study of CEvNS X-ray - spectroscopy

Thank you for your attention!

Backup slides

Angular distribution of total muons flux at GGNT laboratory (π -meson mechanism of muons generation

V. Kazalov "Low-background technique and physics at BNO INR

Characteristics of Baksan rock (shale)

Element	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	CaO	Na ₂ O	K ₂ O	H ₂ O	CO ₂	SO ₃
Content, %	65,73	0,35	13,35	3,68	4,5	2,3	2,52	0,79	3,28	1,7	0,85	0,6

	238U	232Th	40K		
Content, g/g	(1,5÷3,3)*10 ⁻⁶	(1,9 ÷ 2,5)*10 ⁻⁵	3,4*10 ⁻⁶		
Gamma-					
activity of the	3,17E+4	1,17E+4	3,25 (natural)		
rock,					
gamma/sec/gr	~ 0,47				
Unscattered	3,94 gamma/cm ² /sec				
gamma-flux	3,4*10 ⁵ gamma/cm²/day				

Neutron activity: 21,2*10⁻³ neutrons/gr/day Radon: ~ 10⁻¹² Ci/L

V. Kazalov "Low-background technique and physics at BNO INR

Characteristics of Low background concrete based on dunite, quartz sand and selected Portland cement

Composition	Mass content, %	²³⁸ U, g/g	²³² Th, g/g	⁴⁰ K, g/g
Dunite crushed	1115 kg			
stone/rock	(48,5%)	< 3*10 ⁻⁹	2,5*10 ⁻⁸	7,7*10 ⁻⁹
(5÷20 mm)				
Quartz sand	665 kg	9,5*10 ⁻⁸	4,0*10 ⁻⁷	2,2*10 ⁻⁹
(white inwash)	(28%)			
Portland cement	370 kg	1,5*10 ⁻⁶	2,7*10 ⁻⁶	1,33*10 ⁻⁷
(M-400)	(15,5%)			
Water	189 kg			
	(8%)			
Sulfite waste	additive	< 3,1*10 ⁻⁸	< 1,3*10 ⁻⁸	-
liquor				
Plasticizing	additive	< 6,5*10 ⁻⁹	< 3,1*10 ⁻⁸	-
agent				

Neutron activity: 0,64*10⁻³ neutrons/gr/day

Примеры областей допустимых параметров (Δm², sin²2θ), полученных в BEST-2

YangYang Underground Laboratory (Y2L)

AMoRE-II @Yemilab

Yeongduk Kim (CUP IBS) NPB 2024, Hong Kong

AMoRE-II detector

annealed copper tapes

- Cold Pb-Cu Shield

Detector Plate:

AMORE-II

detector tower

MC Plate: 8~10 mK w. 1st PID

Hard thermal contact

with copper rods

673 mm

• The module designs are done for 5-cm and 6-cm LMOs.

Preliminary

Ultimate maximum: 50+26 towers 12 crystal/tower ~ 912 crystals

- LMO crystals: \emptyset 5cm x H.5cm (310g) and \emptyset 6cm x H.6cm (520g)
- Mass: ~80kg ¹⁰⁰Mo (~150kg crystal mass w. ~ 400 LMO crystals)

First Phase: 9 x10 ~ 24kg crystal mass

RESULTS

The total number of Kr-81 K-captures can be estimated from the area under the 13.5 keV TAP curve for all types of events as $N_{K} = N_{K}^{exp}/\epsilon_{d} = 7.8 \times 10^{6}$, where $N_{K}^{exp} = 6.7 \times 10^{6}$ - the number of events with the energy of the region 13.5 ± 3.0 keV for a total of 1,175 live days of measurement; $\epsilon_{d} = 0.869$ is the absolute efficiency to detect respective radiation.

Events selection parameters

Kr-81 $A_2 \sim A_2 \sim 12 \text{ keV}, 0.6 < A_1 < 8.5 \text{ keV}$ $[K^h_\alpha \otimes K^S_\alpha \otimes (eA + e^{SO}_K)]$ Kr-78 $A_2 \sim A_2 \sim 12 \text{ keV}, 1 < A_1 < 4 \text{ keV}$ $[K^h_\alpha \otimes K^S_\alpha \otimes eA]$

$$N_{KK} = N_{K} P_{KK} \omega_{2K} \delta_{e} \eta = 57 \pm 8$$
, where

 N_{K} = 7.8 × 10⁶ - the number of K-capture during 81 Kr decays. P_{KK} = 6.5 × 10⁻⁵ - the probability of the double K-shell vacancy production per K-electron capture for Br-81. (Theoretical calculations) δ_{e} = 0.6 - the fraction of all ejected K-electrons registered in the coincidence according to the selection criteria.

$\eta = \varepsilon_p \cdot \varepsilon_3 \cdot \alpha_k$ with parameters:

 $\varepsilon_{p} = 0.81 \pm 0.01$ - the probability of two K photons to be absorbed in the operating volume;

 $\epsilon_3 = 0.54 \pm 0.05$ - the efficiency to select three-point events;

 α_k = 0.985 ± 0.005 - the fraction of events with two K photons that could be registered as distinct three-point events.

 $N_{coinc}^{dipl} = 42 \pm 6 \implies P_{KK}^{SO} = [5.7 \pm 0.8(stat) \pm 0.4(syst)] \times 10^{-5}$

$$N_{coin}^{enr} = 16 \pm 4 \qquad T_{1/2}^{2V2K} = \ln 2^* N_A \times \frac{p_3 * \varepsilon_f * t}{N_{coin}^{enr}} = [1.9^{+1.3}_{-0.7}(stat) \pm 0.3(syst)] \times 10^{22} \, \text{yr}$$

N=1.08·10²⁴ - the number of Kr-78 atoms in the fiducial volume of the counter $p_3 = 0.47$ - the fraction of 2K-captures accompanied by the emission of two K-photons.

The efficiency is calculated as $\varepsilon_f = \varepsilon_p \cdot \varepsilon_3 \cdot \alpha_k \cdot k_\lambda$,

 $k_{\lambda} = 0.85$ - the useful event selection coefficient for a given threshold for λ

t = 787.7 days of live measurement

Double K-Vacancy Production in Xenon by 88-keV Gamma-ray Photoionization

Such a rare phenomenon as a double-K-shell photoionization of the atom can create the "hollow atom" by absorbing a single photon and releasing both K-electrons. Detection of such a process is possible by observing double-K-satellite fluorescence transitions during relaxation of these states. This process can be a source of background in an experiment to search for 2K-capture of ⁷⁸Kr,^{124,126}Xe and, at the same time, serve as a methodological test for analyzing the accumulated data.

Comparative study of the double-K-shell-vacancy production in single- and double-electron-capture decay,

https://doi.org/10.1103/PhysRevC.96.065502

Schematic of the two electron one-photon (TEOP) or oneelectron one-photon (OEOP) transitions and the atomic-leveldecay diagram for the initial K-shell. The first fluorescence quantum $K^h \alpha_1$ differs most from the energy of $K \alpha_1$, with the energy difference being equal to ~360 and ~680 eV for Kr and Xe, respectively. Detector response to simultaneous registration of two X-ray photons and an Auger electron

Solar axions spectra vs g_{Ay} , g_{Ae} and g_{AN}

The main mechanisms of appearing of solar axions:

1. Reactions of main solar chain. The most intensive fluxes are expected from M1transitions in ⁷Li and ³He nuclei(g_{AN}): ⁷Be+e⁻ \rightarrow Li*+ γ ; ⁷Li* \rightarrow ⁷Li+A(478кэB) $p + d \rightarrow {}^{3}He + A (5.5 M \rightarrow B).$ 2. Magnetic type transitions in nuclei whose low-lying levels are excited due to high temperature in the Sun (⁵⁷Fe, 83 Kr)(g_{AN}) 3. Primakoff conversion of photons in the electric field of solar $plasma(g_{Av})$. 4. Bremsstrahlung: $e+Z(e) \rightarrow Z+A.(g_{Ae})$ 5. Compton process : $\gamma + e \rightarrow e + A.(g_{Ae})$ 6. axio-recombination: $e + I \rightarrow I^- + A$ and axio-deexcitation: $I^* \rightarrow I + A$. PRD 83 023505 (2011) CAST 1302.6283, 1310.0823

Flux of solar axions from ⁸³Kr

The total axions flux Φ_A depends on the nuclear excitation level E_{γ} =9.4keV, temperature of the Sun media T, nuclear level lifetime τ_{γ} =3.6µs, abundance of the ⁸³Kr isotope on the Sun N, and the branching ratio of axion to photon emission ω_A/ω_{γ} :

$$\Phi_{A} = \int N(r) \frac{2 \exp(-E_{\gamma} / kT(r))}{1 + 2 \exp(-E_{\gamma} / kT(r))} \frac{\omega_{A}}{\tau_{\gamma} \omega_{\gamma}} dr$$
$$\Phi_{A}(E_{M1}) = 5.97 \times 10^{23} \left(\frac{\omega_{A}}{\omega_{\gamma}}\right) \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{keV}^{-1}$$

where $m_{\pi} \mu f_{\pi}$ – mass and decay constant of neutral pion, $z=m_u/m_d=0.56$ – quark mass ratio ($f_{\pi} \approx 93$ MeV).