

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark model Results Analysis Experiment Conclusion

Publications

Triply heavy tetraquark spectroscopy

Elena M. Savchenko^{1,2} Vladimir O. Galkin²

¹Department of quantum theory and high energy physics, M.V.Lomonosov Moscow State University

²Federal research center "Computer science and control", Russian Academy of Sciences

The 7th international conference on particle physics and astrophysics, October 24, 2024

Introduction

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model description

Relativistic quark mode

Results

Analysis

Experimen

Conclusior

Publications

o "Ordinary" hadrons:

baryons qqq,

• mesons $q\overline{q}$.

• Exotic hadrons:

• tetraquarks $m qq\overline{q}\overline{q}$,

• pentaquarks $qqqq\overline{q}$, etc.

 \diamond Searches for the $X_{cc\overline{cc}},~X_{bb\overline{b}\overline{b}}$ are conducted on the Large Hadron Collider (LHC) by the LHCb, ATLAS and CMS Collaborations.

Model description I

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptior

Relativistic quark model Results Analysis Experiment Conclusion Publications All parameters of the model (including the constituent masses of quarks) are fixed from previous studies of the properties of mesons and baryons.

- ◇ Quarks under the consideration:
 - $m_{
 m u} = m_{
 m d} = 0.33$ GeV,
 - $m_{
 m s} = 0.50 \,\, {
 m GeV}$,
 - $m_{
 m c} = 1.55$ GeV,
 - $m_{\rm b} = 4.88$ GeV.

Model description II

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model description

Relativistic quark moc Results Analysis Experimen

Conclusio

Publications

Quark content:

- $Q, Q' = c, b, Q \neq Q'.$
- q = u, d, s.
- with one open heavy flavor (without/with strangeness):
 - $QQ\overline{Q}\overline{q}$ (+ c.c.).
- with one open and another hidden heavy flavors (without/with strangeness):
 - $QQ'\overline{Q}\overline{q}$ (+ c.c.).
- with two open heavy flavors (without/with strangeness):
 - $QQ\overline{Q}'\overline{q}$ (+ c.c.).

Model description III

Triply heavy tetraquark spectroscopy

Elena M. Savchenk Vladimir O. Galkin

Introduction

Model descriptior

Relativistic quark mod Results Analysis Experimen

Conclusior

Publications

♦ Diquark–antidiquark bound state: • $\{(Q_1Q_2) - (\overline{Q}_3\overline{q}_4)\}$ (+ c.c.).

- ♦ Diquarks under the consideration:
 - nonpoint-like (the internal structure is taken into account)
 - ground state (1S),
 - color-antitriplet $(\overline{3}_c)$,
 - all masses and form factors of diquarks were calculated earlier during analyzing the properties of baryons.

Model description IV

Triply heavy tetraquark spectroscopy

Elena M. Savchenk Vladimir O. Galkir

Introduction

Model description

Relativistic quark mod Results

Analysis

Experimen

Conclusior

Publications

Ground state diquark spin:

• J = 0 — scalar (S),

• J = 1 — axialvector (A).

◊ Allowed diquark states:

• only axialvector (A):

• QQ.

• both axialvector and scalar (A, S):

- QQ′,
- Qq.

Model description V

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptior

Relativistic quark model Results Analysis Experiment

Conclusion

Publications

Tetraquark's possible configurations:

- AA any composition,
- AS any composition,
- $S\overline{A} QQ'\overline{Q}\overline{q}$ (+ c.c.),
- $S\overline{S} QQ'\overline{Q}\overline{q}$ (+ c.c.).

Relativistic quark model I

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark mode Results Analysis

Experimer

Conclusion

Publications

 Relativistic Schrödinger-type quasipotential equation:

$$\left(\frac{b^2(M)}{2\mu_{\rm R}(M)} - \frac{\mathbf{p}^2}{2\mu_{\rm R}(M)}\right)\Psi_{\rm d,T}(\mathbf{p}) = \int \frac{d^3q}{(2\pi)^3} \ V(\mathbf{p},\mathbf{q};M)\Psi_{\rm d,T}(\mathbf{q})$$

$$\mu_{\rm R} = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}$$

$$b^{2}(M) = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}$$

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark mode

Analysis

Experimen

Conclusion

Publications

 Diquark–antidiquark interaction quasipotential:

$$\begin{split} V(\mathbf{p},\mathbf{q};M) = & \frac{\langle d(\mathcal{P})|J_{\mu}|d(\mathcal{Q})\rangle}{2\sqrt{E_{\mathrm{d}}}\sqrt{E_{\mathrm{d}}}} \frac{4}{3} \alpha_{\mathrm{s}} D^{\mu\nu}(\mathbf{k}) \frac{\langle d'(\mathcal{P}')|J_{\nu}|d'(\mathcal{Q}')\rangle}{2\sqrt{E_{\mathrm{d}}}\sqrt{E_{\mathrm{d}'}}} \\ & + \Psi_{\mathrm{d}}^{*}(\mathcal{P})\Psi_{\mathrm{d}'}^{*}(\mathcal{P}')[J_{\mathrm{d};\mu}J_{\mathrm{d}'}^{\mu}V_{\mathrm{conf.}}^{\mathrm{V}}(\mathbf{k}) + V_{\mathrm{conf.}}^{\mathrm{S}}(\mathbf{k})]\Psi_{\mathrm{d}}(\mathcal{Q})\Psi_{\mathrm{d}'}(\mathcal{Q}') \end{split}$$

Results I

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic

Results

Analysis Experim

Conclusion

Publications

with one open heavy flavor (without/with strangeness):

 Table 1: Masses $M_{QQ\overline{Q}\overline{Q}}$ of the ground states and orbital excitations of triply heavy tetraquarks with one open heavy flavor and without/with strangeness (cccu, ccs, bbbn, bbbs + c.c.).

$d\overline{d}'$	nL	n,	L	s	J	\mathbf{J}^{P}	M _{cccu}	$M_{cc\overline{cs}}$	$M_{bb\overline{b}\overline{u}}$	$M_{bb\overline{b}\overline{s}}$
		-	0	0	0	0+	5080	5205	14895	14998
	1S			1	1	1+	5104	5227	14901	15003
				2	2	2 ⁺	5147	5267	14913	15014
				1	0	0-	5477	5593	15181	15281
				0		1-	5480	5596	15183	15282
				1	1		5486	5601	15184	15284
	1P		1	2			5490	5605	15185	15284
				1	2	2-	5492	5607	15188	15287
АĀ				2	2		5501	5616	15188	15287
				2	3	3	5509	5623	15193	15292
	1D	0	2	2	0	0+	5816	5926	15389	15488
				1	1	1 ⁺	5816	5925	15390	15489
				2			5821	5930	15391	15490
				0	2	2 ⁺	5815	5926	15392	15490
				1			5822	5931	15392	15491
				2			5830	5938	15394	15492
				1	1 3 2 4	3+	5821	5931	15394	15492
				2			5831	5939	15395	15493
				2		4 ⁺	5829	5938	15396	15495
	1S	1	0		1	1+	5060	5180	14885	14989
AS			2		0	0-	5424	5537	15162	15263
	1P			1	1	1-	5430	5542	15164	15265
					2	2-	5441	5552	15168	15269
					1	1+	5760	5866	15370	15470
	1D				2	2 ⁺	5765 🗆	▶ 5871	<15372 >	15472
					3	3+	5773	5878	15374	15474

≣ ∽৭ে 9 / 19

Analysis I

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark mode

Results

Analysis

Experiment Conclusion

Publications

 If energetically possible, the tetraquark will fall-apart into a meson pair through the quark rearrangement.

$$\Delta = M_{\rm QQ'\overline{Q}''\overline{q}} - M_{\rm threshold}^{\rm lowest}$$

 $\diamond\,$ If $\Delta < 0,$ state is stable against fall-apart strong decays.

 \diamond The smaller $\Delta>0,$ the narrower is the state.

Analysis II

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model description

Relativistic quark mod

Results

Analysis

Experiment Conclusion Publications \diamond Most states lie well above thresholds with $\Delta>100$ MeV.

- \diamond Some states lie above thresholds with $50 < \Delta < 100$ MeV.
- $\diamond\,$ Several states lie slightly above thresholds with $0 < \Delta < 50$ MeV.
- \diamond A number of states lie below thresholds with $\Delta < 0.$

Analysis III

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic

Results

Analysis

Experiment

Conclusion

Publications

The most promising to be stable states: with one open heavy flavor (without/with strangeness):

 Table 2: Ground and orbitally excited states of the triply heavy tetraquarks with one open heavy flavor and without/with strangeness (cccīi, cccīs, bbbū, bbbū + c.c.), which lie slightly above or below the meson-meson fall-apart strong decay thresholds.

$QQ'\overline{Q}''\overline{q}$	$d\overline{d}'$	nL	s	J^P	М	M_{thr}	Δ	meson pair	
		15	2	2 ⁺	5147	5104	43	$D^* (2007)^0 J/\psi(1S)$	
			1	2-	5492	5421	71	$D^0 \boldsymbol{\gamma}_{,n}(1P)$	
	AA	1P	2	-	5501		9	×62 ()	
_			2	3	5509	5558	-49	D_2^* (2460) J/ ψ (1S)	
cccu		1D	2 4 ⁺ 5829 5850		-21	$D^*(2007)^0 \psi_3(3842)$			
	AS	1S		1+	5060	4962	98	$D^0 J/\psi(1S)$	
		1P	1	1	5430	5376	54	$\mathrm{D}^0~\chi_{\mathrm{cl}}(\mathrm{1P})$	
				2-	5441	5421	20	$D^0 \chi_{c2}(1P)$	
		1D		3+	5773	5708	65	$D^0 \psi_3(3842)$	
		15	2	2 ⁺	5267	5209	58	$D_s^* J/\psi(1S)$	
	AĀ		1	2-	5607	FEDE	82	D ⁺ 2((1D)	
cc ल्ड		1P	2		5616	5525	91	$D_{s} = \chi_{c2}(11)$	
			2	3	5623	5666	-43	D_{s2}^{*} (2573) J/ ψ (1S)	
		1D	2	4+	5938	5955	-17	$D_{s}^{*} \psi_{3}(3842)$	
	\overline{AS}	1P	- 1	2	5552	5525	27	$D_{s}^{+} \chi_{c2}(1P)$	
		1D		3+	5878	5811	67	$D_{s}^{+} \psi_{3}(3842)$	

Analysis IV

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic

Results

Analysis

Experimen

Conclusion

Publications

Table	2:	table	continues.	
-------	----	-------	------------	--

$QQ'\overline{Q}''\overline{q}$	$d\overline{d}'$	nL	s	$\mathbf{J}^{\mathbf{P}}$	М	$M_{\rm thr}$	Δ	meson pair
			1	0-	15181	15139	42	$^{\rm B^+}\chi_{_{ m b0}}(1{ m P})$
	AĀ	1P	0 1 2	1-	15183 15184 15185	15125	58 59 60	$B_1(5721) \eta_b(18)$
			1 2	2-	15188	15136	52	B_2^* (5747) $\eta_b(18)$
$bb\overline{b}\overline{u}$			2	3-	15193	15198	-5	$B_{2}^{*}(5747) \Upsilon(1S)$
		1D	1 2	3+	15394 15395	15488	-94 -93	$B^* \Upsilon_2(1D)$
			2	4+	15396	15649	-253	B_2^* (5747) χ_{b2} (1P)
	AS	1P		0-	15162	15139	23	$^{\rm B^+}\chi_{_{ m b0}}(1{ m P})$
			1	1-	15164	15125	39	$B_1(5721) \eta_b(1S)$
				2-	15168	15136	32	B_2^* (5747) η_b (18)
		1D		3+	15374	15488	-114	$B^{*} \Upsilon_{2}(1D)$
			1	0-	15281	15226	55	$B_{s}^{0} \chi_{b0}(1P)$
bb b s	AĀ	1P 1D	0 1 2 1 2	1-	15282 15284 15284	15227	55 57 57	$B_{s1}(5830)^0 \eta_b(1S)$
				2-	15287	15239	48	$B_{s2}^{*}(5840)^{0} \eta_{b}(18)$
			2	3-	15292	15300	-8	$B_{s2}^{*}(5840)^{0} \Upsilon(1S)$
			1 2	3+	15492 15493	15579	-87 -86	$B_s^* \Upsilon_2(1D)$
	AS	1P	2	4 ⁺	15495	15752	-257	$B_{s2}^{*}(5840)^{0} \chi_{b2}(1P)$
				0-	15263	15226	37	$B_{s}^{0} \chi_{b0}(1P)$
			1	1-	15265	15227	38	$B_{s1}(5830)^0 \eta_b(1S)$
				2-	15269	15239	30	$B_{s2}^{*}(5840)^{0} \eta_{b}(1S)$
		1D		3+	15474 <	15579 d	∮ -105∢	$=$ $B_s^* \widetilde{\Upsilon}_2(1D) =$

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark mode

Results

Analysis

Experimen

Conclusior

Publications

 In the fully heavy tetraquark sector there are already experimental advancements:

- While studying the double charmonium production, in 2020 the LHCb Collaboration announced the discovery of the narrow resonance X(6900).
- Several other broad structures peaking at about 6.4 and $7.2~{\rm GeV}$ were reported.
- In 2022 ATLAS and CMS Collaborations confirmed X(6900) and hinted on a few more states, including structures at 6.4 and 7.2 GeV.

Experimental data II

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic

Results

Analysis

Experimer

Conclusior

Publications

• Current observation status and our predictions:

Table 3: Exotic X states observed and hinted by the LHCb, ATLAS and CMS Collaborations in di- J/ψ and $J/\psi \ \psi(2S)$ invariant mass spectra and our candidates. All masses M and total widths Γ are given in MeV.

Callabaustian		Deserves	м	F	Our candidates			
	Conaboration		M	1	nL	s	JPC	М
ATLAS	LHCb m ₀ , model A m ₀ , model B m ₁ , model A	X(6600)	$\begin{array}{r} 6400 \div 6600 \\ 6410 \pm 80 \substack{+80 \\ -30} \\ 6650 \pm 20 \substack{+30 \\ -20} \\ 6630 \pm 50 \substack{+80 \\ -20} \end{array}$	$590 \pm 350^{+120}_{-200}$ $440 \pm 50^{+60}_{-50}$ $350 \pm 110^{+110}_{-10}$	15	2	2++	6367
СМS	$\begin{array}{c} BW_1, \\ \text{no interference} \\ BW_1, \\ \text{interference} \end{array}$		$ \begin{array}{r} -10 \\ 6552 \pm 10 \pm 12 \\ \hline 6638^{+43+16} \\ -38-31 \\ \end{array} $	$\frac{-40}{124_{-26}^{+32} \pm 33}$ $\frac{440_{-200-240}^{+230+110}}{-200-240}$	25	0	0++	6782
LHCb	NRSPS, no interference NRSPS, interference		$ \begin{array}{r} 6905 \pm 11 \pm 7 \\ 6886 \pm 11 \pm 11 \end{array} $	$80 \pm 19 \pm 33$ $168 \pm 33 \pm 69$	2S	2	2++	6868
ATLAS	${f m_2},$ model A ${f m_2},$ model B ${f m_3},$ model $oldsymbol{eta}$	X(6900)	$ \begin{array}{r} 6860 \pm 30^{+10}_{-20} \\ \hline 6910 \pm 10 \pm 10 \\ \hline 6960 \pm 50 \pm 30 \\ \end{array} $	$\frac{110 \pm 50^{+20}_{-10}}{150 \pm 30 \pm 10}$ $510 \pm 170^{+110}_{-100}$	1D	0 2 2	2 ⁺⁺ 0 ⁺⁺ 1 ⁺⁺	6921 6899 6904
CMS	BW ₂ , no interference BW ₂ , interference		$ \begin{array}{r} 6927 \pm 9 \pm 4 \\ 6847^{+44+48}_{-28-20} \end{array} $	$\frac{122_{-21}^{+24} \pm 18}{191_{-49-17}^{+66+25}}$		2	2++	6915
LHCb			7200 ÷ 7400					
ATLAS	m_3 , model α		$7220 \pm 30^{+10}_{-30}$	$90 \pm 60^{+60}_{-30}$		0	0++	7259
CMS	BW ₃ , no interference BW ₃ , interference	X(7200)	$\frac{7287^{+20}_{-18} \pm 5}{7134^{+48+41}_{-25-15}}$	$95^{+59}_{-40} \pm 19$ 97^{+40+29}_{-29-26}	3S	2	2++	7333

(□) (□) (三) (三) (三) (三) (三) (□)

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model description

Relativistic quark mod

Results

Analysis

Experiment Conclusion Plenty of new experimental data are expected in the near future, including regions and mass sectors of our interest.

Conclusion I

Triply heavy tetraquark spectroscopy

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark mode Results

Analysis Experime

Conclusion

- Masses of ground and orbitally excited states of all compositions of the triply heavy tetraquarks were calculated.
 - The finite size of a diquark was taken into account.
- Diquarks and antidiquarks were considered to interact as a whole.

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark mode Results Analysis Experiment **Conclusion**

Publications

- Triply heavy tetraquark states which are the most convenient for the experimental detection were identified.
- There are already experimental advancements in the fully heavy tetraquark sector, and our previous predictions based on the Relativistic Quark Model are consistent with them.

Publications

Triply heavy tetraquark spectroscopy

Elena M. Savchenk Vladimir O. Galkin

- Introduction
- Model descriptior
- Relativistic quark mode
- Results
- Analysis
- Experiment
- Conclusion
- Publications

Previous publications related to the topic:

- Masses of the QQQQ tetraquarks in the relativistic diquark–antidiquark picture, Physical Review D, 2020, vol. 102, №11, p. 114030;
- Heavy Tetraquarks in the Relativistic Quark Model, Universe, 2021, vol. 7, №4, p. 94;
- Fully Heavy Tetraquark Spectroscopy in the Relativistic Quark Model, Symmetry, 2022, vol. 14, №12, p. 2504;
- Relativistic description of asymmetric fully heavy tetraquarks in the diquark–antidiquark model, The European Physical Journal A, 2024, vol. 60, №96;
- Relativistic Description of Asymmetric Fully Heavy Tetraquarks, Physics of Particles and Nuclei Letters, 2024, vol. 21, №4, p. 597–600.

Elena M. Savchenko Vladimir O. Galkin

Introduction

Model descriptio

Relativistic quark mode Results Analysis

Conclusio

Publications

Thank you for your attention!

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" grant №22-2-10-3-1.