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Meson clustering

If one's up to analyze PDG tables, an interesting pattern is

seen. Light mesons such as π, η, ρ, ω, aJ, fJ, bJ, hJ all have

close masses:

≈ 1300 MeV 11 states

≈ 1600 MeV 8 states

≈ 2000 MeV 22 states

≈ 2250 MeV 24 states

2



Introduction Meson spectrum Radial quantum number Angular excitations Conclusions

The hadronic string
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Ðèñ. 1: electromagnetic �eld VS gluonic �ux tube: a simple

visualisation

M2 = an+ bJ+ c
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O(4)-symmetry

Inside the excited un�avoured mesons, spin-orbital and

spin-spin correlations are suppressed. Therefore we can

describe mesons made of spinor quarks as if they were

made of scalar quarks.

Total quark spin: S⃗ = s⃗q + s⃗q̄

Singlets and triplets: J⃗ = L⃗+ S⃗, with S = 0 or S = 1,

respectively.

The spectrum can be �tted by a relation

M2 = anr + bL+ c,

where nr is the radial excitation and L is the meson angular

momentum.
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nr=constant
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L=constant
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Slopes

Fitting this data by multiple linear regression, we acquire

that in the relation M2 = a · nr + b · L+ c slopes for nr and

L are the same,

a = 1.14± 0.05, b = 1.14± 0.07, c ≈ 0.5

We can conclude therefore that the whole spectrum

depends on a linear combination nr + L as prescribed by

O(4)-symmetry.

9



Introduction Meson spectrum Radial quantum number Angular excitations Conclusions

The mass operator and the hamiltonian

The mass operator is identi�ed with hamiltonian, and we

suggest m
|p| ≪ 1:

Ĥψ = Eψ, H =
√
p2 +m2 + V(r) ≈ 2p+ V(r)

Here the momentum operator contains both radial and

angular parts, p2 = p2r +
L
r2
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About potential

We use a Cornell potential which is

V(r) = σr− CF

αs

r
+ c

The Casimir term CF depends on Nc and usually is Nc = 3:

CF ≡ N2
c − 1

2Nc

=
4

3

The running coupling αs depends on a distance between

quarks, but we'll not stop here.
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Large Nc limit

An example: τπ± = 2, 6 · 10−8 s, and its charge radius√
< r2π± > ≈ 0, 659 fm, therefore τπ,r ≈ 10−24 is the time

needed to move through the whole string. So no problems?

For mesons above 1 GeV which are acceptable to be

considered as strings, τstr ≈ 10−24 s. The decay width is

τ =
1

Γ
=

Nc

B ·M

B = const and M is meson mass. If Nc → ∞, τ → ∞ too.
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Semiclassical quantization for radial excitations

The mass operator is M = 2p+ σr.

The wave-function for fermions is antisymmertic. The

Bohr-Sommer�eld quantization condition should be∮
p(r)dr = π(nr + γ) ⇒ M2 = 2πσ(nr + γ)

Thus in the M2 = anr + bl+ c the slope for nr is a = 2πσ. If

one forgets about fermionic nature of quarks, the di�erent

slope 4πσ appears.
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A collective gluon excitation

The second option: placing quarks at the 0 and ℓ, assume

interaction by exchanging massive scalar particle. The mass

operator is now M = p+ σr and Bohr-Zommer�eld

quantization condition reads∮
p(r)dr = 2π(nr + γ) ⇒ M2 = 2πσ(nr + γ)

Again, a = 2πσ.

14



Introduction Meson spectrum Radial quantum number Angular excitations Conclusions

Chew-Frautchi formula

Suppose two massless quark rotating at the speed of light at

radius ℓ/2. The �ux tube at the distance r from the center

of mass rotates with the speed v(r) = 2r/ℓ. The mass and

angular momentum of such a �solid� gluon �ux tube are

M = 2

ℓ/2∫
0

σdr√
1− v2(r)

=
πσℓ

2
, L = 2

ℓ/2∫
0

σrv(r)dr√
1− v2(r)

=
πσℓ2

8

⇒ M2 = 2πσL

This is the Chew-Frautschi formula and we've got the same

slope for L which is 2πσ.
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Semiclassical look at angular excitations

Quarks stay in circular classical orbits with large r and p.

There is also a centripetal acceleration acting on them.

Using orbit quantization conditions and applying Newton's

law, we obtain∮
p(r)dr = Lℏ, p =

σr

2
⇒ L =

σr2

2

After some calculations, M2 = 8σL and the slope for L

di�ers crucially from 2πσ for radial excitation, although

M2(L) is still linear.
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Conclusions

• There is a broad mass degeneracy in light un�avoured

mesons. The spectrum depends linearly on meson radial

quantum number nr and its angular momentum L,

M2 = anr + bL+ c.

• The analysis of experimental data shows that a ≈ b ≈ 1.14.

The O(4) degeneracy predicts such a dependency too,

discrete meson spectrum must depend on a single quantum

number N = nr + L+ 1.

• Semiclassical approach is also capable to give us the needed

relation between slopes, a = b = 2πσ, under certain

conditions.
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