Interacting color strings approach to describe puzzling long-range azimuthal correlations in p+p data

Daria Prokhorova, Evgeny Andronov

Laboratory of Ultra-High Energy Physics, St. Petersburg University

based on D. Prokhorova, E. Andronov, Physics, 6 (2024) 264

The authors acknowledge Saint-Petersburg State University for a research project 95413904.

[Motivation and relevance](#page-1-0)

$A + A$ collision event in high energy physics

- soft regime: produced particles with $p_T < 1$ GeV
- perturbative QCD calculations inapplicable
- Quark-Gluon Plasma formation [E. Shuryak, Sov. Phys. JETP 47 (1978) 212]

[https://cds.cern.ch/record/2032743]

QGP **properties**: liquid phase, *T*_{crit} ∼ 150 MeV, ε _{crit} ∼ 1 GeV/fm³ QGP signals: strangeness enhancement, azimuthal flows, jet quenching...

Two-particle angular correlation function: ridge in A+A

Near-side ($\Delta \phi \approx 0, |\Delta \eta| > 2$) ridge manifests collectivity in peripheral $A + A$

$$
\eta = \frac{1}{2} \ln \left(\frac{|\vec{p}| + p_z}{|\vec{p}| - p_z} \right)
$$

$$
\Delta \eta = \eta_1 - \eta_2
$$

$$
\Delta \phi = \phi_1 - \phi_2
$$

$$
C(\Delta \eta, \Delta \phi) = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}
$$

- **Anisotropies** to momentum asymmetries *⋄* relativistic fluid converts initial spatial
- *⋄* flow reflects initial conditions of QGP and medium transport properties

Two-particle angular correlation function: ridge in A+A and p+p

Unexpected near-side ridge in *p* + *p ∼* peripheral *A* + *A* collisions

[CMS, Phys. Lett. B 724 (2013) 213] [ATLAS, Phys. Rev. C 96 (2017) 024908]

- *⋄* medium produced in *p* + *p* is not thermalized as in *A* + *A* prior to hadronisation [V. Ambrus et al. Phys. Rev. Lett. 130 (2023) 15230]
- *⋄* hydro in p+p? [R. D. Weller, P. Romatschke, One fluid to rule them all ... Phys. Lett. B 774 (2017) 351, Y. Zhou et al. One fluid might not rule them all, Nucl. Phys. A 1005 (2021) 121908]

Origin of long-range correlations from another perspective

The near-side azimuthal correlations in both $A + A$ and $p + p$ collisions are long-range in rapidity (with *|*∆*η| >* 1) and

⋄ by causality can arise only at early times of the collision

⋄ are analogous to the large scale fluctuations in CMB

[A. Dumitru et al. Nucl. Phys. A 810 (2008) 91]

How to take into account initial conditions?

- *⋄* fluctuating distributions of participant nucleons
- approaches with **longitudinally extended** colour fields:
	- ❖ Dual Parton Model [A. Capella, Phys. Rep. 236 (1994) 225]
	- ❖ String percolation model [M. Braun, C. Pajares, Nucl. Phys. B 390 (1993) 542]
	- ❖ Colour-Glass Condensate + Glasma [F. Gelis, Int. J. Mod. Phys. A 28 (2013) 1330001]

[The overview of the colour string](#page-6-0) [model approach](#page-6-0)

Advent of the colour string model of particle production

- *⋄* pre-QCD Regge-Gribov approach: high-energy elastic scattering amplitude as multiple Pomeron exchanges [V. N. Gribov, JETP 53 (1967) 654]
- *⋄* dominant contribution of QCD topological expansion in large *N^c* and *N^f* limit – cylindrical diagram corresponds to the Pomeron exchange [G. Veneziano, Nucl. Phys. B 74 (1974) 365; Phys. Lett. B 52 (1974) 220; Nucl. Phys. B 117 (1976) 519] [Capella, Phys. Rep. ²³⁶ (1994) 225]
- *⋄* space-time localisation of the cylindrical pomeron exchange diagram with unitarity cut: two-rapidity-chains fragmenting into soft particles [A. Capella et al. Phys. Lett. B 81 (1979) 68; A. B. Kaidalov, Phys. Lett. B 116 (1982) 459; X. Artru, Phys. Rep. 97 (1983) 147]
- *⋄* Cornell potential between confined colour charges [E. Eichten et al.

Phys. Rev. Lett. 34 (1975) 369]

$$
V(r)=-\frac{4}{3}\cdot\frac{\alpha_{s}}{r}+\sigma_{T}\cdot r,
$$

- *α^s* QCD running coupling
- *σ^T* string tension
- *qq*¯ pair production

P. Varilly, Thesis, MIT (2006)

String fragmentation

- *⋄* in 1 + 1 space-time: massless relativistic string is a yo-yo mode solution of $dp/dt = \pm \sigma$ _T equation of motion [X. Artru, Phys. Rep. 97 (1983) 147]
- *⋄* probabilistic string fragmentation depends on hatched area spanned by quarks' motion [B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97 (1983) 31]
- *⋄* colourless hadrons uniformly distributed over rapidity, *y* = ¹ 2 ln *p*0+*pz p*0*−p^z* \setminus

- *⋄* common approximation: infinite in rapidity strings
- NB NF *⋄* convenient for finite experimental acceptances at mid-rapidity [S. Belokurova, V. Vechernin, Symmetry 12 (2020) 110]
- -Y ^Y **y** *⋄* important to estimate the impact of finite strings' length on long-range δy 0 δy correlations ⁶

[Model of interacting colour](#page-9-0) [strings finite in rapidity](#page-9-0)

Multi-pomeron exchange in inelastic $p + p$ interaction

Step I: find a number of strings depending on collision energy

number of cut pomerons [A. Kaidalov et al. Phys. Lett. B 117 (1982) 247] *→* number of strings in an event: $n_{\text{str}} = 2n_{\text{pom}}$ [A. Capella et al. Phys. Rep. 236 (1994) 225]:

$$
P(n_{\text{pom}}) = C(z) \frac{1}{z n_{\text{pom}}} \left(1 - \exp\left(-z\right) \sum_{l=0}^{n_{\text{pom}}-1} \frac{z^l}{l!} \right),\tag{1}
$$

 $z = \frac{2w\gamma s^{\Delta}}{P^2 + \alpha'$ $\frac{2w\gamma s^{2}}{R^{2}+\alpha'}$ lns</sub>, $w = 1.5$, $\Delta = \alpha(0) - 1 = 0.2$, $\gamma = 1.035$ GeV⁻², $R^{2} = 3.3$ GeV⁻², *α*[′] = 0.05 GeV^{−2} from [V. Vechernin, S. Belokurova, J. Phys. Conf. Ser. 1690 (2020) 012088]

Chiral symmetry restoration in the presence of a colour string

Step II: take into account interactions of free strings

Left: lattice correlator $\langle q\bar{q}\rangle$ -*W* [T. Iritani et al. PoS LATTICE2013 (2014) 37] \leftrightarrow QCD vacuum modifications due to the presence of a QCD string

Right: scalar field of *σ*-mesons with Yukawa potential from straight string [T. Kalaydzhyan, E. Shuryak, Phys. Rev. D 90 (2014) 025031; Phys. Rev. C 90 (2014) 014901]

String-string transverse interaction *↔* motion of 2D gas of particles

The attractive transverse evolution of the string density

Step III: find new string transverse coordinates

strings clustering [T. Kalaydzhyan, E. Shuryak, Phys. Rev. C 90 (2014) 01490]:

$$
\ddot{\vec{r}}_i = \sum_{j \neq i} \vec{f}_{ij} = 2m_{\sigma}(g_N \sigma_T) \sum_{j \neq i} \frac{\vec{r}_{ij}}{\tilde{r}_{ij}} K_1(m_{\sigma} \tilde{r}_{ij}), \qquad (2)
$$

 $m_{\sigma} = 0.6$ GeV, $q_{N} \sigma_{\tau} = 0.2$ - string self-interaction coupling, K_1 - first modified second-kind Bessel function

- *⋄ τ*deepest *→* largest string density
- *⋄ τ* = 1*.*5 fm *→* conventional time before string hadronisation 9

Longitudinal dynamics of finite strings

Step IV: find rapidity coordinates of strings' ends

⋄ initial rapidity of string end defined by current quark mass *m^q* and carried proton momentum fraction *x^q* from PDFs [A. Buckley et al. Eur. Phys. J. C 75 (2015) 132]

$$
y_q^{\text{init}} = \sinh^{-1} \left(\frac{x_q p_{\text{beam}}}{m_q} \right) \tag{3}
$$

⋄ rapidity loss for massive partons at string ends due to string tension $dp_a/dt = -\sigma_T$

$$
y_q^{\text{loss}} = \cosh^{-1}\left(\frac{\tau^2 \sigma_\text{I}^2}{2m_q^2} + 1\right),\tag{4}
$$

τ - same as in transverse dynamics but with periodicity

$$
y_q^{\text{fin}} = y_q^{\text{init}} \pm y_q^{\text{loss}} \tag{5}
$$

p+p event in our picture after 3D evolution of string density

Transverse evolution + longitudinal dynamics *→*

non-uniform 3D strings density

- *⋄* finite transverse strings size *↔* colour confinement [M. Baker et al. Eur. Phys. J. C. 80 (2020) 514]
- *⋄* how to take into account string interactions?

[V. Vechernin, Phys. Atom. Nucl. 70 (2007) 1809]

Interacting strings finite in rapidity: 3D overlaps

Step V: find overlaps of strings finite in rapidity

Cellular fusion on coarse grid vs Local fusion on fine lattice [M. Braun et al. Eur. Phys. J. C 32 (2004) 535] [D. Prokhorova, E. Andronov, Physics, 6 (2024) 264]

Step V: find overlaps of strings finite in rapidity

projection to X–Y plane before/after attractive transverse dynamics

$$
\ddot{\vec{r}}_i = \sum_{j \neq i} \vec{f}_{ij} = 2m_{\sigma}(g_N \sigma_T) \sum_{j \neq i} \frac{\vec{r}_{ij}}{\widetilde{r}_{ij}} K_1(m_{\sigma} \widetilde{r}_{ij})
$$

Step V: find overlaps of strings finite in rapidity

projection to X–rapidity plane before/after attractive transverse dynamics

$$
\ddot{\vec{r}}_i = \sum_{j \neq i} \vec{f}_{ij} = 2m_{\sigma}(g_N \sigma_T) \sum_{j \neq i} \frac{\vec{r}_{ij}}{\tilde{r}_{ij}} K_1(m_{\sigma} \tilde{r}_{ij})
$$

Step V: find overlaps of strings finite in rapidity

projection to X–rapidity plane before/after longitudinal dynamics

$$
y_q^{\text{fin}} = \sinh^{-1}\left(\frac{x_q p_{\text{beam}}}{m_q}\right) \pm \cosh^{-1}\left(\frac{\tau^2 \sigma_f^2}{2m_q^2} + 1\right)
$$

Step V: find overlaps of strings finite in rapidity

projection to Y–rapidity plane before/after longitudinal dynamics

$$
y_q^{\text{fin}} = \sinh^{-1}\left(\frac{x_q p_{\text{beam}}}{m_q}\right) \pm \cosh^{-1}\left(\frac{\tau^2 \sigma_f^2}{2m_q^2} + 1\right)
$$

String fusion and particle production

Step VI: take into account string fusion

⋄ mean multiplicity from a cluster of *k* strings in rapidity interval *ε*rap [M. Braun et al. Int. J. Mod. Phys. A 14 (1999) 2689]

$$
\mu_{\text{bin}} = \mu_0 \varepsilon_{\text{rap}} \sqrt{k} \frac{S_{\text{bin}}}{S_0} \tag{6}
$$

- **Poisson** multiplicity for each ε_{rap} , N_{ch} is a sum of all ε_{rap} contributions
- *⋄* particle's uniform *ϕ ∈* [*−π*, *π*]
- *⋄* mean *p^T* of particles produced by a cluster of *k* strings [M. Braun et al. Phys. Rev. C 65 (2002) 024907, Kovalenko V. et al, Universe 8 (2022) 246]

$$
\boxed{\langle p_{\bar{1}} \rangle_{k} = p_{0} k^{\beta}} \quad \beta = 1.16[1 - (\ln \sqrt{s} - 2.52)^{-0.19} \tag{7}
$$

⋄ particle *p^T* from Schwinger mechanism of pair production [J. Schwinger, Phys. Rev. 82 (1951) 664; E. Gurvich, Phys. Lett. B 87 (1979) 386; A. Casher et al. Phys. Rev. D 20 (1979) 179]

$$
f(p_T) \sim \frac{\pi p_T}{2 \langle p_T \rangle_R^2} \exp\left(-\frac{\pi p_T^2}{4 \langle p_T \rangle_R^2}\right) \tag{8}
$$

⋄ particle species *∼* exp(*−πm*² *i /*4*⟨pT⟩* 2 *k*)

Fusion and kinetic energy of strings

Step VII: string fusion boosts string segments

- *⋄* Strings' overlap modifies colour fields *→* strings gain kinetic energy ∆*T* pulling them towards each other [V. Abramovsky et al. JETP Lett. 47 (1988) 337]
- *⋄* ∆*T* parametrization for a pair of strings in some rapidity slice with centres at 2D distance *di,^j*

$$
\Delta T_{i,j} = \chi d_{i,j} \exp\left(\frac{-d_{i,j}^2}{4r_0^2}\right) \tag{9}
$$

χ - free model parameter, GeV/fm

- *⋄* find the vector sum of gained transverse momenta in each 2D bin in each rapidity slice covered by some number of strings
- *⋄* particles produced in string's rest frame with some *p^T* and *ϕ* will get Lorentz boost to the laboratory frame

Introduced correlated transverse motion of particles produced by 3D bins that strongly depends on the degrees of strings' overlaps inside them

Fusion and particle momentum quenching

Step VIII: lose of particles' momentum in string environment

⋄ quenching of particle's momentum due to gluon radiation in string medium [M. Braun, C. Pajares, Eur. Phys. J. C 71 (2011) 1558]:

$$
p_{\rm fin} = (p_{\rm init}^{1/3} - \varkappa \sigma_{\rm eff}^{2/3} l)^3 \qquad (10)
$$

- *⋄ l* 2D particle's path
- *⋄* κ quenching coefficient, free model parameter

$$
\diamond \ \sigma_{\rm eff} = 4p_0^2\sqrt{k}
$$

Dependence on the path of a particle in fluctuating string environment modifies ϕ and p_T

String fusion → particle boosts + momentum quenching

[Results](#page-23-0)

Model parameters using ATLAS $p+p$ data at $\sqrt{s} = 13$ TeV

$\mu_0 = 1.14$, $\sigma_{\overline{I}} = 0.55$ GeV/fm, $p_0 = 0.37$ GeV, $\varkappa = 0.1$, $\chi = 10^{-5}$ GeV/fm

 20

Emergent flow signal in two-particle correlation function

Model result for $p+p$ with longitudinal + transverse dynamics + string fusion + particles boosts + particles' momentum quenching

- \checkmark Δ*η* ≈ 0, Δ*ϕ* ≈ 0 peak and Δ*η* ≈ 0 structure *ρ*-resonance decay
- ✓ near-side ridge at ∆*ϕ ≈* 0 for wide ∆*η* similar to ATLAS *p* + *p* !!! **|Δη|**

!0 *−* 10% event class (*N*ch), particles: *|η| <* 2*.*5, 0*.*3 *< p^T <* 3*.*0 GeV 21

Elliptic flow harmonic v_2 ^{2} with event multiplicity and p_T

Model result for $p+p$ with longitudinal $+$ transverse dynamics $+$ string fusion + particles boosts + particles' momentum quenching

particles *|η| <* 2*.*5

0*.*5% width event classes, particles *|η| <* 2*.*5

Two-particle cumulants in *ϕ* [S. Wang et al. Phys. Rev. C 44 (1991) 1091]

$$
c_2\{2\} = \langle \langle e^{2i(\phi_1 - \phi_2)} \rangle \rangle
$$

$$
v_2\{2\} = \sqrt{c_2\{2\}}
$$

⟨⟨...⟩⟩ - average of event pairs averaged over all events

- *⋄* flow grows with event multiplicity
- *⋄* splitting of flow signal for central events with different fractions of soft particles
- *⋄* particles' momentum quenching in string medium *→* larger anisotropy for particles with higher p_T

Model result:

- ✓ qualitative description of near-side ridge and *c*2*{*2*}*
- ✓ no away-side ridge
- ✓ obtained core-corona event structure similar to [Y. Kanakubo et al. EPJ Web Conf. 845 (2023) 0101]
	- *⋄* corona: only momentum quenching
	- *⋄* low occupancy core regions: multi-directional particle boosts and ∆*ϕ ≈ π*
	- *⋄* hot core region: single dominant direction of strong particle boosts with ∆*ϕ ≈* 0
- $\sqrt{\tau_{\text{deepest}}}$ as a core-corona separation parameter may be better tuned [K. Werner et al. Phys. Rev. Lett. 106 (2011) 122004]

[Conclusions](#page-28-0)

Models based on colour strings as particle emitting sources can describe collective behaviour if

- *⋄* inhomogeneity in the string density distribution is considered
	- 3D initial conditions are found dynamically from
		- ✓ transverse attractive interaction of strings
		- ✓ strings' longitudinal finitness and length oscillations
	- string fusion non-uniformly modifies string tension in the areas of multiple strings' overlaps
- *⋄* interactions prior to hadronisation is taken into account:
	- string-string: attraction of overlapped strings due to fusion, which results in particle boosts
	- particle-string: momentum quenching in string environment

Advantage: developed model is applicable to both p+p and A+A Thank you for your attention!

BACKUP

Phase diagram of strongly interacting matter

A. Bzdak: "The rest is everybody's guess" Current view

Questions to answer:

- \circ whether cross-over turns into a first-order phase transition at $\mu_B > 0$?
- *⋄* whether QCD critical point exists?
- *⋄* what is the role of colour confinement in hadron production?

Tools available:

- *⋄* lattice QCD calculations
- *⋄* controlled experiments on high energy hadron and ion collisions

QGP vs colour strings scenarios

fluctuating positions of nucleons + hydro QGP

colour strings + their interaction

possible hybrid: colour strings + QGP [C. Shen, B. Schenke, Phys. Rev. C 97 (2018) 024907] 27

- prediction of strangeness enhancement in QGP [J. Rafelski et al. Phys. Rept. 142 (1986) 167]
- experimental observations:
	- *⋄* relative yields of strange hadrons grow with N_{ch} in $p + p$
	- *⋄* at large *N*ch they reach the level of $p + A$ and $A + A$

Is there a common underlying mechanism connected to the QGP formation in both $p + p$ and $A + A$?

[[]ALICE, Nature Phys. 13 (2017) 535]

Strangeness in Multi-Pomeron exchange model

Figure 17. Multiplicity dependence of the strange and multi-strange particle yields (K_s^0 , Λ , Ξ , Ω) divided by charged pion multiplicity. Left plot—our model calculation for pp collisions at $\sqrt{s} = 7$ TeV (solid lines) and for Pb-Pb collisions (dashed lines) at $\sqrt{s_{NN}}$ = 2.76 TeV (this work). Right plot [11] experimental data (dots) and prediction of other models.

[V. Kovalenko et al. Universe 8 (2022) 246]

Measures of Forward-Backward rapidity correlations

Correlation coefficient [S. Uhlig et al. Nucl. Phys. B 132 (1978) 15]

For linear *⟨NB*(*NF*)*⟩* [A.Capella, J. Tran Thanh Van, Phys. Rev. D 1984, 29, 2512–2516]

$$
b_{B-F} = \frac{d\langle N_B(N_F)\rangle}{dN_F}\bigg|_{N_F = \langle N_F\rangle} \quad (11) \qquad b_{\text{corr}}[N_F, N_B] = \frac{\langle N_F N_B \rangle - \langle N_F\rangle \langle N_B \rangle}{\langle N_B^2 \rangle - \langle N_B\rangle^2} \quad (12)
$$

Strongly intensive Σ[*NF, NB*] [E. Andronov, Theor. Math. Phys. 185 (2015) 1383] independent of volume and its event-by-event fluctuations for independent particle production [M. Gorenstein, M. Gazdzicki, Phys. Rev. C 84 (2011) 014904]

$$
\Sigma[N_F, N_B] = \frac{\langle N_F \rangle \omega[N_B] + \langle N_B \rangle \omega[N_F] - 2(\langle N_F N_B \rangle - \langle N_F \rangle \langle N_B \rangle)}{\langle N_F \rangle + \langle N_B \rangle} \tag{13}
$$

- *⋄ N^F* or *N^B* multiplicities in Forward or Backward rapidity intervals
- *⋄ ⟨..⟩* averaging over events
- *⋄ ω*[*A*] = *⟨A* 2 *⟩ − ⟨A⟩* 2 */⟨A⟩* scaled variance of extensive event variable *A*

Model formalism for independent particle sources

3 types of strings with respect to Forward и Backward windows in rapidity:

- n_{for} short: producing particles only in **Forward** window
- n_{back} short: producing particles only in **Backward** window
- *n*long long: producing particles both in Forward and Backward windows

The probability to have some string configuration *C*: $\sum_{C} q(C) \equiv \sum_{n_{\text{long}}, n_{\text{for}}, n_{\text{back}}} q(n_{\text{long}}, n_{\text{for}}, n_{\text{back}}) = 1$

Multiplicities in rapidity windows: $N_F = \sum_{k=1}^{n_{\rm long}} N_F^{(k)} + \sum_{s=1}^{n_{\rm for}} N_F^{(s)}$ *F* , $N_B = \sum_{k=1}^{n_{\text{long}}} N_B^{(k)} + \sum_{t=1}^{n_{\text{back}}} N_B^{(t)}$ *B* .

Joint distribution: $P(N_F, N_B) = \sum_C q(C) P_C(N_F, N_B)$.

Comparison of analytical and numerical calculations

$$
\langle N_F \rangle = \overline{\mu} \cdot (\overline{n_{\text{long}}} + \overline{n_{\text{for}}}), \qquad (14)
$$

$$
b_{\text{corr}}[N_F, N_B] = \frac{\overline{\mu} \cdot (D_{n_{\text{long}}} + 2 \cdot \text{cov}(n_{\text{long}}, n_{\text{for}}) + \text{cov}(n_{\text{for}}, n_{\text{back}}))}{\overline{\mu} \cdot (D_{n_{\text{long}}} + 2 \cdot \text{cov}(n_{\text{long}}, n_{\text{for}}) + D_{n_{\text{for}}}) + \overline{n_{\text{long}}} + \overline{n_{\text{for}}}}, \quad (15)
$$

$$
\Sigma[N_F, N_B] = 1 + \overline{\mu} \cdot \frac{D_{n_{\text{back}}} - \text{cov}(n_{\text{for}}, n_{\text{back}})}{\overline{n_{\text{long}}} + \overline{n_{\text{for}}}}. \quad (16)
$$

Independent sources, evolving till *τ*_{deepest}:

Particle transverse flow in hadron collisions

[M. Aggarwal et al. Adv. Nucl. Phys. 257 (2021) 161]

- *⋄* Paradigm: initial spatial anisotropies are converted to momentum asymmetries
- *⋄* Fourier expansion of the single-particle distribution in the azimuthal angle, *ϕ*, [S. Voloshin, Y. Zhang, Z. Phys. C 70 (1996) 665]

[https://cerncourier.com/a/goingwith-the-flow/; Credit: MUSIC arXiv:1209.6330]

$$
E\frac{d^3N_{\text{ch}}}{d^3p} = \frac{1}{2\pi} \frac{d^2N_{\text{ch}}}{p_T dp_T dy} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_{RP}))\right)
$$
(17)

Two-particle angular correlation function, p+p@ 13 TeV

C(∆*η,* ∆*ϕ*) calculated for particles with *|η| <* 2*.*5 and 0*.*3 *< p^T <* 3*.*0 GeV. Presented for event class with particle selection $p_T^{\text{cent}}>0.2$ GeV and $\langle N_{\text{ch}}\rangle\approx$ 53.

- *⋄* only particle momentum quenching, no boosts
- *⋄* no near-side ridge is visible ³⁴

CMS two-particle angular correlation functions, p+p@ 7 TeV

(a) minimum bias events with $pT > 0.1$ GeV/c, (b) minimum bias events with $1 < pT < 3$ GeV/c, (c) high multiplicity (\geq 110) events with pT > 0.1 GeV/c and (d) high multiplicity (\geq 110) events with 1 < pT < 3 GeV/c [CMS, JHEP 09 (2010) 091] 35

Found relationships between the studied quantities

It has been shown that:

1. Σ[N_F , N_B] $\approx \sigma^2$ (C) − variance of event-by-event asymmetry coefficient distribution [PHOBOS, Phys. Rev. C 74 (2006) 011901(R)]:

 $C = \frac{N_F - N_B}{\sqrt{N_F + N_B}}$

2. With notations from [M. Kitazawa, X. Luo, Phys. Rev. C 96 (2017) 024910], one finds for cumulants $\langle ., \rangle_c$ and factorial cumulants $\langle ., \rangle_f$ of $N_f - N_B$ distribution:

$$
\Sigma[N_F, N_B] = \frac{\langle q_{(b)}^2 \rangle_c}{\langle q_{(a)} \rangle_c} = 1 + \frac{\langle q_{(b)}^2 \rangle_{\text{fc}}}{\langle q_{(a)} \rangle_{\text{fc}}},\tag{19}
$$

- \cdot *q*_(*a*) = *N_F* + *N*_B, *q*_(*b*) = *N_F* − *N*_B
- connection of Σ[*NF, NB*] to ratios of (factorial) cumulants is another way to see its strong intensity

Cumulants and factorial cumulants of $N_F - N_B$ distribution

First-order and second-order cumulants for the joint probability distribution, *P* (*NF, NB*), in terms of the moments of the same distribution:

$$
\langle q_{(a)}\rangle_c = \langle N_F \rangle + \langle N_B \rangle, \tag{20}
$$

$$
\langle q_{(b)}\rangle_c = \langle N_F \rangle - \langle N_B \rangle, \tag{21}
$$

$$
\langle q_{(a)}^2 \rangle_c = \langle N_F^2 \rangle - \langle N_F \rangle^2 + \langle N_B^2 \rangle - \langle N_B \rangle^2 + 2 \cdot (\langle N_F N_B \rangle - \langle N_F \rangle \langle N_B \rangle), (22)
$$

$$
\langle q_{(b)}^2 \rangle_c = \langle N_F^2 \rangle - \langle N_F \rangle^2 + \langle N_B^2 \rangle - \langle N_B \rangle^2 - 2 \cdot (\langle N_F N_B \rangle - \langle N_F \rangle \langle N_B \rangle), (23)
$$

$$
\langle q_{(a)} \cdot q_{(b)} \rangle_c = \langle N_F^2 \rangle - \langle N_F \rangle^2 - \langle N_B^2 \rangle + \langle N_B \rangle^2. \tag{24}
$$

Factorial cumulants in terms of the cumulants:

$$
\langle q_{(a)}\rangle_{\text{fc}} = \langle q_{(a)}\rangle_{\text{c}},\tag{25}
$$

$$
\langle q_{(b)}\rangle_{\text{fc}} = \langle q_{(b)}\rangle_{\text{c}},\tag{26}
$$

$$
\langle q_{(a)}^2 \rangle_{\rm fc} = \langle q_{(a)}^2 \rangle_{\rm c} - \langle q_{(a^2)} \rangle_{\rm c} = \langle q_{(a)}^2 \rangle_{\rm c} - \langle q_{(a)} \rangle_{\rm c},\tag{27}
$$

$$
\langle q_{(b)}^2 \rangle_{\text{fc}} = \langle q_{(b)}^2 \rangle_{\text{c}} - \langle q_{(b^2)} \rangle_{\text{c}} = \langle q_{(b)}^2 \rangle_{\text{c}} - \langle q_{(a)} \rangle_{\text{c}}, \tag{28}
$$

$$
\langle q_{(a)} \cdot q_{(b)} \rangle_{\rm fc} = \langle q_{(a)} \cdot q_{(b)} \rangle_{\rm c} - \langle q_{(ab)} \rangle_{\rm c} = \langle q_{(a)} \cdot q_{(b)} \rangle_{\rm c} - \langle q_{(b)} \rangle_{\rm c} . \tag{29}
$$

Rapidity correlations: $b_{corr}[N_F, N_B]$ and $\Sigma[N_F, N_B]$ results

Toy model (short strings + fusion) results for:

$$
b_{\text{corr}}[N_F, N_B] = \frac{\langle N_F N_B \rangle - \langle N_F \rangle \langle N_B \rangle}{\langle N_B^2 \rangle - \langle N_B \rangle^2} \qquad \Sigma[N_F, N_B] = \frac{\langle N_F \rangle \omega[N_B] + \langle N_B \rangle \omega[N_F] - 2(\langle N_F N_B \rangle - \langle N_F \rangle \langle N_B \rangle)}{\langle N_F \rangle + \langle N_B \rangle}
$$

- ✓ finite strings make long-range correlations dependent on ∆*y* even without explicit short-range correlations
- ✓ string fusion splits the values of Σ[*NF, NB*]: the larger the string density, the smaller the $\Sigma[N_F, N_B]$ value, while it is strongly intensive for free strings 38

Results for $\langle p_T \rangle - N$ at $\sqrt{s} = 900$ GeV

Elaborated model (longitudinal + transverse dynamics + fusion) result vs ALICE data, dependence on the string density evolution time *τ*

✓ good slope of *⟨pT⟩ − N* correlation for *τ*deepest, absent for free strings

✓ PYTHIA result w/wo Colour Reconnection resembles model behaviour

$\mathsf{F}\text{-}\mathsf{B}$ multiplicity fluctuations at $\sqrt{\mathsf{s}} = 900$ GeV: Σ[N $_{\mathsf{F}}, \mathsf{N}_{\mathsf{B}}$]

[D. Prokhorova, E. Andronov, G. Feofilov, Physics 5 (2023) 636]

Conclusion: Σ[*NF,NB*] depends on the formation of string clusters and grows with ∆*η* due to appearance of short strings and not short-range correlations.