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Motivation and relevance



A+ A collision event in high energy physics

[https://cds.cern.ch/record/2032743]

• soft regime: produced
particles with pT < 1 GeV

• perturbative QCD
calculations inapplicable

• Quark-Gluon Plasma
formation [E. Shuryak, Sov.

Phys. JETP 47 (1978) 212]

QGP properties: liquid phase, Tcrit ∼ 150 MeV, εcrit ∼ 1 GeV/fm3

QGP signals: strangeness enhancement, azimuthal flows, jet quenching...
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Two-particle angular correlation function: ridge in A+A

Near-side (∆ϕ ≈ 0, |∆η| > 2) ridge manifests collectivity in peripheral A+ A

[CMS, Phys. Lett. B 724 (2013) 213]
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∆η = η1 − η2

∆ϕ = ϕ1 − ϕ2

C(∆η,∆ϕ) = S(∆η,∆ϕ)
B(∆η,∆ϕ)

⋄ relativistic fluid converts initial spatial
anisotropies to momentum asymmetries

⋄ flow reflects initial conditions of QGP and
medium transport properties
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Two-particle angular correlation function: ridge in A+A and p+p

Unexpected near-side ridge in p+ p ∼ peripheral A+ A collisions

[CMS, Phys. Lett. B 724 (2013) 213] [ATLAS, Phys. Rev. C 96 (2017) 024908]

⋄ medium produced in p+ p is not thermalized as in A+ A prior to
hadronisation [V. Ambrus et al. Phys. Rev. Lett. 130 (2023) 15230]

⋄ hydro in p+p? [R. D. Weller, P. Romatschke, One fluid to rule them all ... Phys. Lett. B 774
(2017) 351, Y. Zhou et al. One fluid might not rule them all, Nucl. Phys. A 1005 (2021) 121908]
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Origin of long-range correlations from another perspective

The near-side azimuthal correlations in both A+ A and p+ p collisions are
long-range in rapidity (with |∆η| > 1) and

[A. Dumitru et al. Nucl. Phys. A 810 (2008) 91]

⋄ by causality can arise only at early times
of the collision

⋄ are analogous to the large scale
fluctuations in CMB

How to take into account initial conditions?

⋄ fluctuating distributions of participant nucleons
⋄ approaches with longitudinally extended colour fields:

v Dual Parton Model [A. Capella, Phys. Rep. 236 (1994) 225]
v String percolation model [M. Braun, C. Pajares, Nucl. Phys. B 390 (1993) 542]
v Colour-Glass Condensate + Glasma [F. Gelis, Int. J. Mod. Phys. A 28 (2013) 1330001]

4



The overview of the colour string
model approach



Advent of the colour string model of particle production

⋄ pre-QCD Regge-Gribov approach: high-energy
elastic scattering amplitude as multiple
Pomeron exchanges [V. N. Gribov, JETP 53 (1967) 654]

P P P P P P…

⋄ dominant contribution of QCD topological expansion in
large Nc and Nf limit – cylindrical diagram corresponds to
the Pomeron exchange [G. Veneziano, Nucl. Phys. B 74 (1974)
365; Phys. Lett. B 52 (1974) 220; Nucl. Phys. B 117 (1976) 519] [Capella, Phys. Rep. 236 (1994) 225]

⋄ space-time localisation of the cylindrical pomeron exchange
diagram with unitarity cut: two-rapidity-chains fragmenting into
soft particles [A. Capella et al. Phys. Lett. B 81 (1979) 68; A. B. Kaidalov,
Phys. Lett. B 116 (1982) 459; X. Artru, Phys. Rep. 97 (1983) 147]

⋄ Cornell potential between confined colour charges [E. Eichten et al.

Phys. Rev. Lett. 34 (1975) 369]

q q

q qq q

q qq q

V (r) = −4
3
·
αs

r
+ σT · r,

• αs - QCD running coupling
• σT - string tension
• qq̄ pair production

P. Varilly, Thesis,

MIT (2006)
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String fragmentation

⋄ in 1+ 1 space-time: massless relativistic string is a yo-yo mode solution of
dp/dt = ±σT equation of motion [X. Artru, Phys. Rep. 97 (1983) 147]

⋄ probabilistic string fragmentation depends on hatched area spanned by quarks’
motion [B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97 (1983) 31]

⋄ colourless hadrons uniformly distributed over rapidity, y = 1
2 ln
(
p0+pz
p0−pz

)

dN/dy

yY-Y

dN/dy

y0 Y-Y

NFNB
Δy

0 δyδy

⋄ common approximation: infinite in rapidity strings

⋄ convenient for finite experimental acceptances at mid-rapidity [S. Belokurova, V.
Vechernin, Symmetry 12 (2020) 110]

⋄ important to estimate the impact of finite strings’ length on long-range
correlations 6



Model of interacting colour
strings finite in rapidity



Multi-pomeron exchange in inelastic p+ p interaction

Step I: find a number of strings depending on collision energy

number of cut pomerons [A. Kaidalov et al. Phys. Lett. B 117 (1982) 247] → number of
strings in an event: nstr = 2npom [A. Capella et al. Phys. Rep. 236 (1994) 225] :

P (npom) = C (z) 1
znpom

1− exp (−z)
npom−1∑
l=0

zl
l!

 , (1)

z = 2wγs∆
R2+α′ ln s , w = 1.5, ∆ = α(0)− 1 = 0.2, γ = 1.035 GeV−2 , R2 = 3.3 GeV−2 ,

α
′
= 0.05 GeV−2 from [V. Vechernin, S. Belokurova, J. Phys. Conf. Ser. 1690 (2020) 012088]

[A. Capella, Phys.
Rep. 236 (1994) 225]
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Chiral symmetry restoration in the presence of a colour string

Step II: take into account interactions of free strings

Left: lattice correlator ⟨qq̄⟩-W [T. Iritani et al. PoS LATTICE2013 (2014) 37] ↔ QCD
vacuum modifications due to the presence of a QCD string

⟨qq̄ (r⊥)W⟩
⟨qq̄⟩⟨W⟩

= 1− CK0
(
mσ r̃⊥

)
• K0 - modified Bessel function

• mσ = 0.6 GeV

• r̃⊥ =
√
r2⊥ + s2str

• sstr = 0.176 fm, C = 0.26

Right: scalar field of σ-mesons with Yukawa potential from straight string
[T. Kalaydzhyan, E. Shuryak, Phys. Rev. D 90 (2014) 025031; Phys. Rev. C 90 (2014) 014901]

String-string transverse interaction↔ motion of 2D gas of particles
8



The attractive transverse evolution of the string density

Step III: find new string transverse coordinates
strings clustering [T. Kalaydzhyan, E. Shuryak, Phys. Rev. C 90 (2014) 01490] :

¨⃗ri =
∑
j ̸=i

f⃗ij = 2mσ(gNσT)
∑
j̸=i

r⃗ij
r̃ij
K1(mσ r̃ij), (2)

mσ = 0.6 GeV, gNσT = 0.2 - string self-interaction coupling, K1 - first modified
second-kind Bessel function

⋄ τdeepest → largest string density

⋄ τ = 1.5 fm→ conventional time before string hadronisation 9



Longitudinal dynamics of finite strings

Step IV: find rapidity coordinates of strings’ ends

⋄ initial rapidity of string end defined by current quark mass mq and
carried proton momentum fraction xq from PDFs [A. Buckley et al. Eur. Phys. J.

C 75 (2015) 132]

yinit
q = sinh−1

(
xqpbeam
mq

)
(3)

⋄ rapidity loss for massive partons at string ends due to string tension
dpq/dt = −σT

yloss
q = cosh−1

(
τ 2σ2T
2m2

q
+ 1
)
, (4)

τ - same as in transverse dynamics but with periodicity

yfin
q = yinit

q ± yloss
q (5)
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p+p event in our picture after 3D evolution of string density

Transverse evolution + longitudinal dynamics→

non-uniform 3D strings density

rapidity

X

Y

⋄ finite transverse strings size↔ colour
confinement [M. Baker et al. Eur. Phys. J. C. 80 (2020) 514]

⋄ how to take into account string interactions?
[V. Vechernin, Phys. Atom. Nucl. 70 (2007) 1809]
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Interacting strings finite in rapidity: 3D overlaps

Step V: find overlaps of strings finite in rapidity

Cellular fusion on coarse grid vs Local fusion on fine lattice
[M. Braun et al. Eur. Phys. J. C 32 (2004) 535] [D. Prokhorova, E. Andronov, Physics, 6 (2024) 264]
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String distributions on a fine lattice

Step V: find overlaps of strings finite in rapidity

projection to X–Y plane before/after attractive transverse dynamics

¨⃗ri =
∑
j ̸=i

f⃗ij = 2mσ(gNσT)
∑
j ̸=i

r⃗ij
r̃ij
K1(mσ r̃ij)
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String distributions on a fine lattice

Step V: find overlaps of strings finite in rapidity

projection to X–rapidity plane before/after attractive transverse dynamics

¨⃗ri =
∑
j ̸=i

f⃗ij = 2mσ(gNσT)
∑
j ̸=i

r⃗ij
r̃ij
K1(mσ r̃ij)
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String distributions on a fine lattice

Step V: find overlaps of strings finite in rapidity

projection to X–rapidity plane before/after longitudinal dynamics

yfin
q = sinh−1

(
xqpbeam
mq

)
± cosh−1

(
τ 2σ2T
2m2

q
+ 1
)
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String distributions on a fine lattice

Step V: find overlaps of strings finite in rapidity

projection to Y–rapidity plane before/after longitudinal dynamics

yfin
q = sinh−1

(
xqpbeam
mq

)
± cosh−1

(
τ 2σ2T
2m2

q
+ 1
)
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String fusion and particle production

Step VI: take into account string fusion
⋄ mean multiplicity from a cluster of k strings in rapidity interval εrap
[M. Braun et al. Int. J. Mod. Phys. A 14 (1999) 2689]

µbin = µ0εrap
√
kSbin
S0

(6)

⋄ Poisson multiplicity for each εrap , Nch is a sum of all εrap contributions
⋄ particle’s uniform ϕ ∈ [−π, π]
⋄ mean pT of particles produced by a cluster of k strings [M. Braun et al. Phys. Rev. C
65 (2002) 024907, Kovalenko V. et al, Universe 8 (2022) 246]

⟨pT⟩k = p0kβ β = 1.16[1− (ln
√
s− 2.52)−0.19 (7)

⋄ particle pT from Schwinger mechanism of pair production [J. Schwinger, Phys. Rev.
82 (1951) 664; E. Gurvich, Phys. Lett. B 87 (1979) 386; A. Casher et al. Phys. Rev. D 20 (1979) 179]

f(pT) ∼
πpT
2⟨pT⟩2k

exp
(
−

πp2T
4⟨pT⟩2k

)
(8)

⋄ particle species ∼ exp(−πm2
i /4⟨pT⟩

2
k)
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Fusion and kinetic energy of strings

Step VII: string fusion boosts string segments

⋄ Strings’ overlap modifies colour fields→ strings gain kinetic energy ∆T
pulling them towards each other [V. Abramovsky et al. JETP Lett. 47 (1988) 337]

⋄ ∆T parametrization for a pair of strings in some rapidity slice with
centres at 2D distance di,j

∆Ti,j = χdi,j exp
(
−d2i,j
4r20

)
(9)

χ - free model parameter, GeV/fm

⋄ find the vector sum of gained transverse momenta in each 2D bin in
each rapidity slice covered by some number of strings

⋄ particles produced in string’s rest frame with some pT and ϕ will get
Lorentz boost to the laboratory frame

Introduced correlated transverse motion of particles produced by 3D bins
that strongly depends on the degrees of strings’ overlaps inside them
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Fusion and particle momentum quenching

Step VIII: lose of particles’ momentum in string environment

⋄ quenching of particle’s momentum due to gluon radiation in string
medium [M. Braun, C. Pajares, Eur. Phys. J. C 71 (2011) 1558]:
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X

0 rapidity

pfin = (p1/3init − κσ2/3eff l)
3 (10)

⋄ l - 2D particle’s path

⋄ κ - quenching coefficient, free
model parameter

⋄ σeff = 4p20
√
k

Dependence on the path of a particle in fluctuating string environment
modifies ϕ and pT

String fusion→ particle boosts + momentum quenching
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Results



Model parameters using ATLAS p+ p data at
√
s = 13 TeV

µ0 = 1.14, σT = 0.55 GeV/fm, p0 = 0.37 GeV, κ = 0.1, χ = 10−5 GeV/fm

η
4− 3− 2− 1− 0 1 2 3 4

η
/d

ch
 d

N
⋅ 

ev
1/

N

6

6.2

6.4

6.6

6.8

7

7.2

7.4 | < 2.5η > 0.1 GeV, |
T

 2, p≥ chN

 ATLAS data pp@13000 GeV

this model, interacting strings

 

 [GeV]
T

p
1−10 1

)
T

 d
p

η
)/

(d
ch

 N2
 (

d
⋅

) 
T

 pπ2
ev

1/
(N

3−10

2−10

1−10

1

10

| < 2.5η > 0.1 GeV, |
T

 2, p≥ chN

 ATLAS data pp@13000 GeV

this model, interacting strings

 

chN
0 20 40 60 80 100 120

)
ch

P
(N

0

0.005

0.01

0.015

0.02

0.025

0.03

| < 2.5η > 0.1 GeV, |
T

 2, p≥ chN

 ATLAS data pp@13000 GeV

this model, interacting strings

 

chN
0 20 40 60 80 100 120

>
 [G

eV
]

T
<

p

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
| < 2.5η > 0.1 GeV, |

T
 2, p≥ chN

 ATLAS data pp@13000 GeV

this model, interacting strings

 

20



Emergent flow signal in two-particle correlation function

Model result for p+p with longitudinal + transverse dynamics + string
fusion + particles boosts + particles’ momentum quenching

✓ ∆η ≈ 0, ∆ϕ ≈ 0 peak and ∆η ≈ 0 structure - ρ-resonance decay
✓ near-side ridge at ∆ϕ ≈ 0 for wide ∆η similar to ATLAS p+ p !!!
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0− 10% event class (Nch), particles: |η| < 2.5, 0.3 < pT < 3.0 GeV 21



Elliptic flow harmonic v2{2} with event multiplicity and pT

Model result for p+p with longitudinal + transverse dynamics + string
fusion + particles boosts + particles’ momentum quenching
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al. Phys. Rev. C 44 (1991) 1091]

c2{2} = ⟨⟨e2i(ϕ1−ϕ2)⟩⟩

v2{2} =
√
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⟨⟨...⟩⟩ - average of event pairs
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0.5% width event classes, particles |η| < 2.5

⋄ flow grows with event multiplicity

⋄ splitting of flow signal for central
events with different fractions of
soft particles

⋄ particles’ momentum quenching in
string medium→ larger anisotropy
for particles with higher pT
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Collective behaviour in interacting string model: results

Model result:

✓ qualitative description of near-side ridge and c2{2}
✓ no away-side ridge
✓ obtained core-corona event structure similar to

[Y. Kanakubo et al. EPJ Web Conf. 845 (2023) 0101]

⋄ corona: only momentum quenching

⋄ low occupancy core regions: multi-directional
particle boosts and ∆ϕ ≈ π

⋄ hot core region: single dominant direction of
strong particle boosts with ∆ϕ ≈ 0

✓ τdeepest as a core-corona separation parameter
may be better tuned [K. Werner et al. Phys. Rev. Lett.

106 (2011) 122004]
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Conclusions



Collective behaviour in interacting string model: conclusions

Models based on colour strings as particle emitting sources can
describe collective behaviour if

⋄ inhomogeneity in the string density distribution is considered
• 3D initial conditions are found dynamically from

✓ transverse attractive interaction of strings
✓ strings’ longitudinal finitness and length oscillations

• string fusion non-uniformly modifies string tension in the areas of
multiple strings’ overlaps

⋄ interactions prior to hadronisation is taken into account:
• string-string: attraction of overlapped strings due to fusion, which
results in particle boosts

• particle-string: momentum quenching in string environment

Advantage: developed model is applicable to both p+p and A+A

Thank you for your attention!
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BACKUP
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Phase diagram of strongly interacting matter

μB

T

hadron gas

QGP

cross-over

nuclear 
liquid-gas

~ 920 MeV

Lattice QCD:

Tc ~ 155 MeV

A. Bzdak: ”The rest is everybody’s guess” Current view

Questions to answer:
⋄ whether cross-over turns into a first-order phase transition at µB > 0?
⋄ whether QCD critical point exists?
⋄ what is the role of colour confinement in hadron production?

Tools available:
⋄ lattice QCD calculations
⋄ controlled experiments on high energy hadron and ion collisions
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QGP vs colour strings scenarios

fluctuating positions of nucleons + hydro QGP

 

String fusion and  
hadronization

Colour 
reconnection

String 
formation

Incident 
nuclei

Time 

colour strings + their interaction
possible hybrid: colour strings + QGP [C. Shen, B. Schenke, Phys. Rev. C 97 (2018) 024907] 27



QGP-like behaviour in small systems: strangeness enhancement

[ALICE, Nature Phys. 13 (2017) 535]

• prediction of strangeness
enhancement in QGP [J. Rafelski et al.

Phys. Rept. 142 (1986) 167]

• experimental observations:

⋄ relative yields of strange
hadrons grow with Nch in p+ p

⋄ at large Nch they reach the
level of p+ A and A+ A

Is there a common underlying
mechanism connected to the QGP
formation in both p+ p and A+ A?
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Strangeness in Multi-Pomeron exchange model

[V. Kovalenko et al. Universe 8 (2022) 246]
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Measures of Forward-Backward rapidity correlations

Correlation coefficient [S. Uhlig et
al. Nucl. Phys. B 132 (1978) 15]

bB−F =
d⟨NB(NF)⟩

dNF

∣∣∣∣
NF=⟨NF⟩

(11)

For linear ⟨NB(NF)⟩ [A.Capella, J. Tran Thanh Van,
Phys. Rev. D 1984, 29, 2512–2516]

bcorr[NF,NB] =
⟨NFNB⟩ − ⟨NF⟩⟨NB⟩

⟨N2B⟩ − ⟨NB⟩2
(12)

Strongly intensive Σ[NF,NB] [E. Andronov, Theor. Math. Phys. 185 (2015) 1383]
independent of volume and its event-by-event fluctuations for independent
particle production [M. Gorenstein, M. Gazdzicki, Phys. Rev. C 84 (2011) 014904]

Σ[NF,NB] =
⟨NF⟩ω[NB] + ⟨NB⟩ω[NF]− 2(⟨NFNB⟩ − ⟨NF⟩⟨NB⟩)

⟨NF⟩+ ⟨NB⟩
(13)

dN/dy

yY-Y

dN/dy

y0 Y-Y

NFNB
Δy

0 δyδy

⋄ NF or NB - multiplicities in Forward or
Backward rapidity intervals

⋄ ⟨..⟩ - averaging over events

⋄ ω[A] =
(
⟨A2⟩ − ⟨A⟩2

)
/⟨A⟩ - scaled

variance of extensive event variable A
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Model formalism for independent particle sources

3 types of strings with respect to Forward и Backward windows in
rapidity:

• nfor - short: producing particles only in Forward window
• nback - short: producing particles only in Backward window
• nlong - long: producing particles both in Forward and Backward
windows

The probability to have some string configuration C:∑
C q (C) ≡

∑
nlong,nfor,nback

q (nlong,nfor,nback) = 1

Multiplicities in rapidity windows: NF =
∑nlong

k=1 N(k)
F +

∑nfor
s=1 N

(s)
F ,

NB =
∑nlong

k=1 N(k)
B +

∑nback
t=1 N(t)

B .

Joint distribution: P(NF,NB) =
∑

C q (C)PC (NF,NB).
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Comparison of analytical and numerical calculations

⟨NF⟩ = µ · (nlong + nfor) , (14)

bcorr[NF,NB] =
µ ·
(
Dnlong + 2 · cov (nlong,nfor) + cov (nfor,nback)

)
µ ·
(
Dnlong + 2 · cov (nlong,nfor) + Dnfor

)
+ nlong + nfor

, (15)

Σ[NF,NB] = 1+ µ · Dnback − cov (nfor,nback)

nlong + nfor
. (16)

Independent sources, evolving till τdeepest:
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Particle transverse flow in hadron collisions

[M. Aggarwal et al. Adv. Nucl. Phys. 257 (2021) 161]

⋄ Paradigm: initial spatial anisotropies are
converted to momentum asymmetries

⋄ Fourier expansion of the single-particle
distribution in the azimuthal angle, ϕ, [S.
Voloshin, Y. Zhang, Z. Phys. C 70 (1996) 665]

[https://cerncourier.com/a/going-
with-the-flow/; Credit: MUSIC
arXiv:1209.6330]

Ed
3Nch
d3p =

1
2π

d2Nch
pTdpTdy

(
1+ 2

∞∑
n=1

vn cos(n(ϕ−ΨRP))

)
(17)
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Two-particle angular correlation function, p+p@ 13 TeV

C(∆η,∆ϕ) calculated for particles with |η| < 2.5 and 0.3 < pT < 3.0 GeV. Presented
for event class with particle selection pcent

T > 0.2 GeV and ⟨Nch⟩ ≈ 53.

⋄ only particle momentum quenching, no boosts
⋄ no near-side ridge is visible 34



CMS two-particle angular correlation functions, p+p@ 7 TeV

(a) minimum bias events with pT > 0.1 GeV/c, (b) minimum bias events with 1 < pT < 3
GeV/c, (c) high multiplicity (≥ 110) events with pT > 0.1 GeV/c and (d) high multiplicity (≥
110) events with 1 < pT < 3 GeV/c [CMS, JHEP 09 (2010) 091] 35



Found relationships between the studied quantities

It has been shown that:

1. Σ[NF,NB] ≈ σ2(C) - variance of
event-by-event asymmetry coefficient
distribution [PHOBOS, Phys. Rev. C 74 (2006)
011901(R)]:

C =
NF − NB√
NF + NB

(18)

dN/dy

yY-Y

dN/dy

y0 Y-Y

NFNB
Δy

0 δyδy

2. With notations from [M. Kitazawa, X. Luo, Phys. Rev. C 96 (2017) 024910], one finds
for cumulants ⟨..⟩c and factorial cumulants ⟨..⟩fc of NF −NB distribution:

Σ[NF,NB] =
⟨q2(b)⟩c

⟨q(a)⟩c
= 1+

⟨q2(b)⟩fc

⟨q(a)⟩fc
, (19)

• q(a) = NF + NB, q(b) = NF − NB
• connection of Σ[NF,NB] to ratios of (factorial) cumulants is another way
to see its strong intensity
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Cumulants and factorial cumulants of NF − NB distribution

First-order and second-order cumulants for the joint probability distribution,
P (NF,NB), in terms of the moments of the same distribution:

⟨q(a)⟩c = ⟨NF⟩+ ⟨NB⟩, (20)
⟨q(b)⟩c = ⟨NF⟩ − ⟨NB⟩, (21)
⟨q2(a)⟩c = ⟨N2F⟩ − ⟨NF⟩2 + ⟨N2B⟩ − ⟨NB⟩2 + 2 · (⟨NFNB⟩ − ⟨NF⟩⟨NB⟩) , (22)
⟨q2(b)⟩c = ⟨N2F⟩ − ⟨NF⟩2 + ⟨N2B⟩ − ⟨NB⟩2 − 2 · (⟨NFNB⟩ − ⟨NF⟩⟨NB⟩) , (23)
⟨q(a) · q(b)⟩c = ⟨N2F⟩ − ⟨NF⟩2 − ⟨N2B⟩+ ⟨NB⟩2. (24)

Factorial cumulants in terms of the cumulants:

⟨q(a)⟩fc = ⟨q(a)⟩c , (25)
⟨q(b)⟩fc = ⟨q(b)⟩c , (26)
⟨q2(a)⟩fc = ⟨q2(a)⟩c − ⟨q(a2)⟩c = ⟨q2(a)⟩c − ⟨q(a)⟩c , (27)
⟨q2(b)⟩fc = ⟨q2(b)⟩c − ⟨q(b2)⟩c = ⟨q2(b)⟩c − ⟨q(a)⟩c , (28)
⟨q(a) · q(b)⟩fc = ⟨q(a) · q(b)⟩c − ⟨q(ab)⟩c = ⟨q(a) · q(b)⟩c − ⟨q(b)⟩c . (29)
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Rapidity correlations: bcorr[NF,NB] and Σ[NF,NB] results

Toy model (short strings + fusion) results for:

bcorr[NF,NB] = ⟨NFNB⟩−⟨NF⟩⟨NB⟩
⟨N2B⟩−⟨NB⟩2

Σ[NF,NB] = ⟨NF⟩ω[NB]+⟨NB⟩ω[NF]−2(⟨NFNB⟩−⟨NF⟩⟨NB⟩)
⟨NF⟩+⟨NB⟩

ηΔ
0 1 2 3 4 5 6 7 8 9

] B
, N F

[NΣ

0.9
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1.2

1.3

1.4

1.5

1.6

1.7

1.8

 

 = 0.5ηδ
 
no fusion, Poisson with mean = 8
no fusion, Poisson with mean = 30
no fusion, Poisson with mean = 50
 
fusion, Poisson with mean = 8
fusion, Poisson with mean = 30
fusion, Poisson with mean = 50

 

δη = 0.5

<n_str> = 8
<n_str> = 30
<n_str> = 50

fusionfree

Δη

Σ[NF,NB]

δy = 0.5

Δy

dN/dy

yY-Y

dN/dy

y0 Y-Y

NFNB
Δy

0 δyδy

✓ finite strings make long-range correlations dependent on ∆y even without
explicit short-range correlations

✓ string fusion splits the values of Σ[NF,NB]: the larger the string density, the
smaller the Σ[NF,NB] value, while it is strongly intensive for free strings 38



Results for ⟨pT⟩ − N at
√
s = 900 GeV

Elaborated model (longitudinal + transverse dynamics + fusion) result vs
ALICE data, dependence on the string density evolution time τ

N
0 5 10 15 20

>
, G

eV
/c

T
<

p

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
 < 4 GeV/c

T
pp@900 GeV, 0.15 < p

 = 1.5 fm/cτindependent strings, 
 = 1.5 fm/cτwith string fusion, 

deepestτindependent strings, 

deepestτwith string fusion, 
independent strings, no transverse move
with string fusion, no transverse move
PYTHIA 8.3 no CR inelastic
PYTHIA 8.3 default inelastic
ALICE data

 

✓ good slope of ⟨pT⟩ − N correlation for τdeepest, absent for free strings

✓ PYTHIA result w/wo Colour Reconnection resembles model behaviour
39



F-B multiplicity fluctuations at
√
s = 900 GeV: Σ[NF,NB]

η∆
0.2− 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

]
B

,N
F

[NΣ

1

1.02

1.04

1.06

1.08
 < 1.5 GeV/c

T
pp@900 GeV, 0.3 < p

 = 1.5 fm/cτindependent strings, 
 = 1.5 fm/cτwith string fusion, 

deepestτindependent strings, 

deepestτwith string fusion, 
PYTHIA 8.3 no CR inelastic
PYTHIA 8.3 default inelastic

 

[D. Prokhorova, E. Andronov, G. Feofilov, Physics 5 (2023) 636]

Conclusion: Σ[NF,NB] depends on the formation of string clusters
and grows with ∆η due to appearance of short strings and not
short-range correlations.
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