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QED cascades

QED cascade (also called electromagnetic cascade) is a chain of
successive events of hard photon emission and electron-positron pair
photoproduction.

Cascades arise when a high-energy photon or lepton enters media or
strong external field producing a bunch of secondary particles.

Pair production has a certain energy threshold that limits the number
of produced leptons.
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Extensive air showers

QED cascades are widely studied as a part of extensive air showers and as
a strong-field QED phenomenon.

Figure: Visualization of extensive air shower.
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Heitler model for QED cascade

Energy is split in two in lepton and photon decay processes.

All processes happen after passing the same free path L.

Number of leptons Ne in terms of seed electron energy ε0 and pair
producton threshold E0 at high energy limit ε0 � E0 can be
approximated as

Ne ≈
2

3

ε0

E0
. (1)

Depth at which lepton production stops is given by formula

tm ≈ L ln

(
ε0
E0

)
. (2)
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Generalized Heitler model

Energy is split in two in photon decay processes.

A fixed fraction k of leptons energy is transfered to an emitted
photon, i.e. every lepton with energy ε emits a photon with energy kε.

Leptons and photons have different free paths Le and Lγ , respectively.

Final number of leptons and cascade depth are to be obtained.
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Original and generalized Heitler model comparison
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Figure: Schematics of the electron-seeded QED cascade in original (left) and
generalized (right) Heitler model. Straight and wavy lines correspond to leptons
and photons, respectively. Their different heights represent different free paths, g
is the number of generation.
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Basic definitions

Energy distributions for leptons and photons

fe(ε, t) =
dNe(ε, t)

dε
, fγ(ε, t) =

dNγ(ε, t)

dε
, (3)

where Ne(ε, t) and Nγ(ε, t) are the numbers of leptons and photons
with energies up to ε at depth t, respectively.

Differential rates We→γ(ε, ε′) and Wγ→e(ε, ε′) give the probabilities
for photon emission and pair photoproduction per unit depth and unit
energy range of the final particle, respectively.

In case of We→γ(ε, ε′), ε and ε′ denote the initial lepton energy and
the energy of emitted photon, respectively.

In case of Wγ→e(ε, ε′), ε and ε′ are the energies of the initial photon
and of the produced electron, respectively.
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General form of the equations

Kinetic equations for QED cascade:
∂fe(ε, t)

∂t
=

∫ ∞
ε

fe(ε′, t)We→γ(ε′, ε′ − ε)dε′+

+ 2

∫ ∞
ε

fγ(ε′, t)Wγ→e(ε′, ε)dε′−

−
∫ ε

0
fe(ε, t)We→γ(ε, ε′)dε′,

∂fγ(ε, t)

∂t
=

∫ ∞
ε

fe(ε′, t)We→γ(ε′, ε)dε′ −
∫ ε

0
fγ(ε, t)Wγ→e(ε, ε′)dε′.

Initial conditions for the seeding electron scenario:

fe(ε, 0) = δ(ε− ε0), fγ(ε, 0) = 0. (4)
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Model equations

In accordance with our model assumptions we set differential rates

We→γ(ε, ε′) =
1

Le
δ(ε′ − kε), Wγ→e(ε, ε′) =

1

Lγ
δ(ε′ − ε/2). (5)

Kinetic equations take the form

∂fe(ε, t)

∂t
=

1

Le (1− k)
fe

(
ε

1− k
, t

)
+

4

Lγ
fγ(2 ε, t)− 1

Le
fe(ε, t),

∂fγ(ε, t)

∂t
=

1

Le k
fe
( ε
k
, t
)
− 1

Lγ
fγ(ε, t).

(6)

Note that rates (5) and kinetic equations (6) do not include pair
production threshold E0 and are only valid at ε ≥ E0. Accounting for
energy threshold would significantly complicate solving the equations
and is not necessary for our goals.
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Solution for energy distributions

Eqs. (6) can be solved analytically with Mellin transform. Solution for
leptons and photons distributions takes form

fe(ε, t) =
∞∑

p,l=0

Apl (t, Le , Lγ) δ
(
ε− ε0(1− k)p(k/2)l

)
, (7)

fγ(ε, t) =
∞∑

p,l=0

Bpl (t, Le , Lγ) δ
(
ε− ε0k(1− k)p(k/2)l

)
. (8)

From Eqs. (7) and (8) we can see that the cascade consists of leptons and
photons with energies

ε
(e)
pl = ε0(1− k)p(k/2)l , ε

(γ)
pl = ε0(1− k)p(k/2)lk, (9)

The coefficients Apl(t, Le , Lγ) and Bpl(t, Le , Lγ) represent the amounts of
leptons and photons with the corresponding energies at depth t.

14 / 29



Solution for energy distributions

Figure: The dependence of the coefficients A00,B00,A11 and B11 on depth t for
Le/Lγ = 1/3.
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General method

A lepton contributes to the final number of leptons when its energy
falls below E0.

To track such leptons we count the number of processes with energies
of initial particles greater than E0 and of final leptons lower than E0.

Each hard photon emission results in one lepton and each
photoproduction results in two leptons.

General formula reads

Ne =

∫ ∞
0

dt

∫ ∞
E0

dε

∫ E0

0
[fe(ε, t)We→γ(ε, ε− ε′)+

+ 2 fγ(ε, t)Wγ→e(ε, ε′)]dε′. (10)
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Exact formula

By substituting distribution solutions (7) and (8) and rates (5) in general
formula (10) we arrive at

Ne =

 ∑
E06ε0(1−k)p(k/2)l6E0/(1−k)

+2
∑

E06ε0(1−k)p(k/2)lk62E0

 2lC l
p+l , (11)

where C k
n = n!

k!(n−k)! .
Final number of leptons appears to be a function of two dimensionless
parameters η = E0/ε0 and k

Ne = Ne(η, k). (12)
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Exact formula

Figure: The final number of leptons as a function of ε0/E0 (left) and k (right).
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Integral representation

By applying Mellin transform over η = E0/ε0 to general formula (10) we
arrive at

N̂e(s, k) =

∫ ∞
0

ηsNe(η, k)dη = (13)

=
1

s + 1

1 + 2ks+1 − (1− k)s+1 − 2(k/2)s+1

1− (1− k)s+1 − 2(k/2)s+1
. (14)

Thus we obtain an integral representation of the final number of leptons as
an inverse Mellin transform of (13):

Ne(η, k) =
1

2πi

∫ σ+i∞

σ−i∞

ds η−s−1

s + 1

1 + 2ks+1 − (1− k)s+1 − 2(k/2)s+1

1− (1− k)s+1 − 2(k/2)s+1
,

(15)
where integral is taken along a vertical line in complex plane and σ is such
that N̂e(s, k) is analytical in the halfplane <(s) > σ.
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Integral representation

Function N̂e(s, k) has singularity points:

Simple pole at s = 0.

Set of simple poles with <(s) ≤ 0.

Removable singularity at s = −1.

Figure: The location of simple poles of N̂e(s, k) in the s-plane at k = 0.2.
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High energy limit

We evaluate the integral in Eq. (15) by choosing any σ > 0 and using the
residue theorem:

+∞∑
ν=−∞

1

sν + 1

(
ε0

E0

)sν+1
1 + 2ksν+1 − (1− k)sν+1 − 2(k/2)sν+1

(1− k)sν+1 ln(1/(1− k)) + 2(k/2)sν+1 ln(2/k)
.

(16)
Since <(sν) ≤ 0, in high energy limit ε0 � E0 final number of leptons can
be written as

Ne = N
(1)
e + o(ε0/E0), (17)

where N
(1)
e collects the contribution of all poles with <(s) = 0 that are

linear in ε0/E0 and can be used as an approximation.
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High energy limit

In the most general case of irrational ln(1− k)/ ln(k/2), s = 0 is the only
pole with <(s) = 0 and approximate formula for the final number of
leptons reads

N
(1)
e =

ε0

E0

2k

(1− k) ln(1/(1− k)) + k ln(2/k)
. (18)

In case of rational ln(1− k)/ ln(k/2) = m/n, formula (18) is modified by a
factor

πe{π− mod 2π[y ln(2ε0/E0)]}/y

y sinh(π/y)
, (19)

where y = −2πm/ ln(1− k) = −2πn/ ln(k/2).
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Exact and approximate solutions comparison

Figure: The final number of leptons (dashed lines) and its linear approximation
(solid lines) as functions of ε0/E0 (left) and k (right).
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Cascade depth

Depth tm at which cascade final multiplicity is achieved, i.e. cascade
depth, in our model can be roughly estimated

tm ≈
2Lγ√

1 + 8Lγ/Le − 1
ln

(
2N

(1)
e

1 + 1/
√

1 + 8Lγ/Le

)
. (20)

In case of k = 1/2 and Le = Lγ = L the original Heitler model results are
reproduced:

N
(1)
e =

2

3
2dlog2(ε0/E0)e, (21)

tm ≈ L ln(2)

⌈
ln(ε0/E0)

ln(2)

⌉
. (22)
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Summary

A generalized Heitler model for a QED cascade with an arbitrary fixed
energy transfer coefficient for photon emission and different free paths
of leptons and photons is considered.

Analytical solutions for distributions above photoproduction threshold
are obtained.

Exact and approximate formulae for the final number of leptons are
obtained. At high seeding particle energy the cascade multiplicity is
linear in ratio of seeding particle energy to photoproduction threshold.

A rough estimation for cascade depth in a high energy limit is
obtained.

The original Heitler model results are reproduced as a special case.

More information can be found on arXiv:2408.06466.
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Thank you for your attention!
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