Particle production in intensive plane wave background.

Ekaterina Dmitrieva, Petr Satunin

INR RAS, MSU

Ekaterina Dmitrieva, Petr Satunir	(INR RAS,Partic	le production in intensive plane wave	ba 25.10.24	1 / 14
-----------------------------------	-----------------	---------------------------------------	-------------	--------

イロト 不得 トイラト イラト 一日

- Particle production in oscillating field $\Phi_0 \sin(m_{\phi}t)$ Enhancement by parametrical resonance Matter creation at preheating stage after inflation Kofman, Linde, Starobinskiy 94, 97 (hep-th/9405187,hep-ph/9704452) Khlebnikov, Tkachev 96 (hep-ph/9608458) Duffaeux et al 06 (hep-ph/0602144)
- Particle production in intense plane wave $\Phi_0 \sin(\omega t kx)$ A.Arza. PRD 105 (2022) 3, 036004 (2009.03870) Intense waves can be applied to new physical directions in astrophysics.

Lagrangian

$$\mathcal{L} = rac{1}{2} (\partial_{\mu} \phi)^2 + rac{1}{2} (\partial_{\mu} \chi)^2 - rac{1}{2} m_{\phi}^2 \phi^2 - rac{1}{2} m_{\chi}^2 \chi^2 - g \phi \chi^2,$$

- Classical wave of ϕ in the initial state, $\phi(\vec{x}, t) = \Phi_0 \cos(px \omega t)$ Vacuum of χ in the initial state
- Pertubative production if $m_\phi > 2 m_\chi$
- Non-pertubative production of χ particles even if $m_\phi < 2m_\chi$ at high amplitude Φ_0
- Direct solution of Heisenberg equation on χ amplitude

Heisenberg equations

Equations of motion,

$$(\Box + m_{\phi}^2)\phi = -g\chi^2, \leftarrow$$
 neglect at early times $(\Box + m_{\chi}^2)\chi = -2g\phi\chi.$

Fourier for χ_k

$$\chi = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\Omega_{\vec{k}}}} \Big(\chi_{\vec{k}}(t) e^{i\vec{k}\cdot\vec{x}} + \chi_{\vec{k}}(t)^{\dagger} e^{-i\vec{k}\cdot\vec{x}} \Big),$$

where $\Omega_{\vec{k}} = \sqrt{k^2 + m_{\chi}^2}$ and $[\chi_{\vec{k}}, \chi_{\vec{k}'}] = 0, [\chi_{\vec{k}}, \chi_{\dagger}^{\dagger}] = (2\pi)^3 \delta^3(\vec{k} - \vec{k'}).$

Bogolubov transformation $A_{\vec{k}} = \chi_{\vec{k}} + \chi^{\dagger}_{-\vec{k}}$, equation in terms of A_k :

$$(\partial_t^2 + \Omega_{\vec{k}}^2) A_{\vec{k}} = -\omega_{\vec{p}}^2 \alpha \left(\sqrt{\frac{\Omega_{\vec{k}}}{\Omega_{\vec{k}-\vec{p}}}} A_{\vec{k}-\vec{p}} e^{-i\omega_{\vec{p}}t} + \sqrt{\frac{\Omega_{\vec{k}}}{\Omega_{\vec{k}+\vec{p}}}} A_{\vec{k}+\vec{p}} e^{i\omega_{\vec{p}}t} \right),$$

where $\alpha \equiv \frac{g\Phi_0}{\omega_{\vec{p}}^2} = \frac{g\sqrt{2\rho_{\phi}}}{\omega_{\vec{p}}^3}.$

Ekaterina Dmitrieva, Petr Satunin (INR RAS, Particle production in intensive plane wave ba

4/14

Approximation A.Arza, 2022

 $\chi_k \equiv a_k(t) e^{-i\Omega_k t}$ Looking for the resonance in a_k $e^{-i\Omega_{\vec{k}}t}(\ddot{a}_{\vec{k}}-2i\Omega_{\vec{k}}\dot{a}_{\vec{k}})=\sigma_{\vec{p}-\vec{k}}a^{\dagger}_{\vec{p}-\vec{k}}e^{i(\Omega_{\vec{p}-\vec{k}}-\omega_{\vec{p}})t},$ RWA $\ddot{a}_{k} \rightarrow 0$ $-2i\Omega_{\vec{k}}\dot{a}_{\vec{k}} = \sigma_k a^{\dagger}_{\vec{p}-\vec{k}} e^{i(\Omega_{\vec{k}}+\Omega_{\vec{p}-\vec{k}}-\omega_{\vec{p}})t},$ where $\sigma_k = g_1 / \frac{\rho_{\phi}/2}{\omega^2 \Omega_1 \Omega_{p-k}}$, $\sigma_{p-k} = -\omega^2 \alpha_1 / \frac{\Omega_k}{\Omega_{p-k}}$ Resonant solution $a_{\vec{L}}(t) =$ $e^{i\epsilon_{\vec{k}}t/2} \Big(a_{\vec{k}}(0)(\cosh(s_{\vec{k}}t) - i\frac{\epsilon_{\vec{k}}}{2s_{\vec{r}}}\sinh(s_{\vec{k}}t)) + i\frac{\sigma_{\vec{p}-\vec{k}}}{2s_{\vec{r}}\Omega_{\vec{r}}}a^{\dagger}_{\vec{p}-\vec{k}}(0)\sinh(s_{\vec{k}}t)\Big),$ where $s_{\vec{k}} = \frac{1}{2} \sqrt{\frac{\sigma_{\vec{p}-\vec{k}}^2}{\Omega_{-}^2} - \epsilon_{\vec{k}}^2}$ and $\epsilon_{\vec{k}} = \epsilon_{\vec{p}-\vec{k}} = \Omega_{\vec{k}} + \Omega_{\vec{p}-\vec{k}} - \omega_{\vec{p}}$ $\rightarrow \alpha \ll 1, \mu \ll 1$ $\ddot{a}_{\ell} \ll \Omega_{\ell} \dot{a}_{\ell}$ Boundary: $\alpha > \mu^2$ - instability Any solution for arbitrary α, μ ? (ロト (四) (日) (日) (日) (日)

25.10.24

Without approximation

Not neglecting \ddot{a}_k Ansatz: $a_{\vec{k}}(t) = e^{i\epsilon_{\vec{p}-\vec{k}}t/2} \left[a_{\vec{k}}(0) \left(\cosh(s_{\vec{p}-\vec{k}}t) - iC_1 \sinh(s_{\vec{p}-\vec{k}}t) \right) - a_{\vec{p}-\vec{k}}^{\dagger}(0) \cdot iC_2 \sinh(s_{\vec{p}-\vec{k}}t) \right]$ Commutators $\rightarrow C_1^2 - C_2^2 = -1$ Solution

$$C_{1} = \frac{\epsilon_{\vec{p}-\vec{k}}^{2}/4 - s_{\vec{p}-\vec{k}}^{2} - \Omega_{\vec{k}}\epsilon_{\vec{p}-\vec{k}}}{s_{\vec{p}-\vec{k}}(\epsilon_{\vec{p}-\vec{k}} - 2\Omega_{\vec{k}})}, \ C_{2} = \frac{\sigma_{\vec{p}-\vec{k}}}{s_{\vec{p}-\vec{k}}(\epsilon_{\vec{p}-\vec{k}} - 2\Omega_{\vec{k}})},$$

$$s_{\vec{p}-\vec{k}}^{2} = -\frac{\epsilon_{\vec{p}-\vec{k}}^{2}}{4} - 2\Omega_{\vec{k}}^{2} + \epsilon_{\vec{p}-\vec{k}}\Omega_{\vec{k}} + \sqrt{\Omega_{\vec{k}}^{2}\epsilon_{\vec{p}-\vec{k}}^{2} + 4\Omega_{\vec{k}}^{4} + \sigma_{\vec{p}-\vec{k}}^{2} - 4\epsilon_{\vec{p}-\vec{k}}\Omega_{\vec{k}}^{3}}$$

 $\alpha = \mu^2 - \text{ still boundary of instability for arbitrary } \alpha, \mu$

Ekaterina Dmitrieva, Petr Satunin (INR RAS, Particle production in intensive plane wave ba

Dependence $\alpha(\mu)$

for
$$k = p/2$$
 $\alpha = \mu^2$; $\mu \gg 1 \rightarrow \alpha = \mu^2$ for any k is in the second

Ekaterina Dmitrieva, Petr Satunin (INR RAS,Particle production in intensive plane wave ba 25.10.24 7/14

Occupancy number

Approximation

$$f_{\chi,\vec{k}}(t) = \langle 0|a_{\vec{k}}^{\dagger}(t)a_{\vec{k}}(t)|0\rangle = \frac{\sigma_{\vec{p}-\vec{k}}^2}{4} \frac{\sinh^2(s_{\vec{k}}^0t)}{\left(s_{\vec{k}}^0\right)^2 \Omega_{\vec{k}}^2},$$

Without approximation

$$f_{\chi,ec{k}}(t) = \langle 0 | a^{\dagger}_{ec{k}}(t) a_{ec{k}}(t) | 0
angle = rac{\sigma^2_{ec{p}-ec{k}}}{4} rac{\sinh^2(s_{ec{k}}t)}{s_{ec{k}}^2(\Omega_{ec{k}}-\epsilon_{ec{k}}/2)^2}.$$

The total density

$$n_{\chi}(t) = \int \frac{d^3k}{(2\pi)^3} f_{\chi,\vec{k}}(t),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The contours for s = 0

No symmetry $k \to p-k$ at $\alpha \gg 1 \to {\sf fall}$ of 2 particle production interpretation

Ekaterina Dmitrieva, Petr Satunin (INR RAS,Particle production in intensive plane wave ba

25.10.24

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Particle production in condensate

Equation of motion for $\phi(t) = \Phi \cos(m_{\phi} t)$ and p = 0

$$\ddot{\chi}_k + \left(k^2 + m_{\chi}^2 + 2g\Phi\cos(m_{\phi}t)\right)\chi_k = 0,$$

The Mathieu equation

$$\chi_k'' + (A_k + 2q\cos(2z))\chi_k = 0,$$

where

$$A_k=4rac{k^2+m_\chi^2}{m_\phi^2}, \qquad q=4rac{g\Phi}{m_\phi^2}.$$

The number of modes determines as,

$$n_k = \langle 0 | a_k(t) a_k^{\dagger}(t) | 0
angle = |\chi_k(t)|^2$$

25.10.24

The Heisenberg equation for condensate, p = 0

$$e^{-i\Omega_k t} \left[\ddot{a}_k - 2i\Omega_k \dot{a}_k + 2\alpha\omega^2 \cos(m_\phi t) a_k \right] + e^{i\Omega_k t} \left[\ddot{a}_{-k}^{\dagger} + 2i\Omega_k \dot{a}_{-k}^{\dagger} + 2\alpha\omega^2 \cos(m_\phi t) a_{-k}^{\dagger} \right] = 0$$

Solution

$$\begin{aligned} a_k(t) &= e^{i\epsilon_k t/2} \Big(a_k(0) \left(\cosh(st) - i \frac{\epsilon^2/4 - s^2 - \Omega_k \epsilon_k}{s(2\Omega_k - \epsilon_k)} \sinh(st) \right) - \\ &- i a_{-k}^{\dagger} \frac{\alpha \omega^2}{s(2\Omega_k - \epsilon_k)} \sinh(st) \Big), \end{aligned}$$

where

$$s = \sqrt{\Omega_k^2 (2\Omega_k - \epsilon_k)^2 + lpha^2 m_\phi^4} - \Omega_k (2\Omega_k - \epsilon_k) - rac{\epsilon_k^2}{4}$$

In terms of the parameters of the Mathieu equation for $s^2 = 0$:

$$q = |A_k - 1|$$

where $A_k = 4 rac{k^2 + m_\chi^2}{m_\phi^2}, \qquad q = 4 rac{g \Phi}{m_\phi^2}.$

Ekaterina Dmitrieva, Petr Satunin (INR RAS, Particle production in intensive plane wave ba

25.10.24

<□> <舂> <≧> <≧> <≧> <≧> <≧> ○<⊙

11/14

Stability diagram

 $q \ll 1$ - narrow resonance, $q \gg 1$ - broad resonance

Ekaterina Dmitrieva, Petr Satunin (INR RAS,Particle production in intensive plane wave ba 25.10.24 12/14

2

Conclusion

• For a plane wave, resonance will occur if the initial wave has a sufficiently high energy density. The threshold energy density

$$p_{\phi} \geq rac{m_{\chi}^4 \omega^2}{2g^2}$$

for any m_{χ} .

- It can be concluded that the interpretation through particles is not applicable to this case
- There may be other solutions for condensate, since the Mathieu equation has already been solved by mathematicians
- For a plane wave, there may be other solutions that can increase the instability region and will correspond to other peaks of the Mathieu equation

25.10.24

Thank you for your attention!

イロト イボト イヨト イヨト

э