Müeller–Navelet dijet production in the High–Energy Factorization approach

A. Chernyshev^{$\dagger,\star,1$} & V. Saleev^{$\dagger,*$}

[†]Bogoliubov Laboratory of Theoretical Physics, JINR *Moscow State U., Dubna Branch *Samara National Research U.

> **ICPPA'24** 22–25^{Oct}, 2024

Supported by:

Foundation for the Advancement of Theoretical Physics and Mathematics BASIS,

grant No. 24-1-1-16-5.

¹Email: chernyshev@theor.jinr.ru

Motivation: «small *x*» activities at LHC

Two most important kinematical regimes:

- i. **Bjorken limit:** $(-\hat{t}) \sim Q^2 \to \infty$ while $\hat{s} \sim (-\hat{t}) \Rightarrow$ DGLAP logs $\alpha_s^n \ln^n ((-\hat{t})/\Lambda^2)$.
- ii. **Regge limit:** $\hat{s} \gg (-\hat{t}) \Rightarrow \text{ BFKL logs } \alpha_s^n \ln^n (\hat{s}/(-\hat{t})).$

Search for BFKL evolution manifestations:

- Müeller–Navelet dijets_[Müeller, Navelet '87]:
 - Experimental data at large Y_[CMS '16,20];
 - ► Theoretical studies using *collinear factorization*[Szymanowski *et.al.*; Papa *et.al.*; Sabio-Vera *et.al.*; Kim *et.al.*];
- ► Higgs boson+jet production, see[Papa et.al.].

There is an approach beyond collinear factorization-High-Energy Factorization (HEF).

In this talk: Müeller-Navelet dijet production in the HEF with BFKL via gluodynamics.

High-Energy Factorization approach: I

Consider some process:

$$p(P_1) + p(P_2) \rightarrow \mathcal{Y}(p^{\pm}, \mathbf{p}_T) + X,$$

where $P_{1,2} = (P^{\pm}/2) n_{\mp}$ with $P^{\pm} = \sqrt{S}$. We use Sudakov light–cone basis vectors n_{\pm} : $(n_{\pm}, n_{\mp}) = 2, p^{\pm} = (p, n_{\pm}), \text{ so } y(p) = (1/2) \ln(p^+/p^-)$. Introduce $x_{\pm} = p^{\pm}/P^{\pm}$, then:

$$\sigma^{(\text{CPM})} = \int_{x_{+}}^{1} \frac{dz_{+}}{z_{+}} F\left(\frac{x_{+}}{z_{+}}, \mu_{F}^{2}\right) \int_{x_{-}}^{1} \frac{dz_{-}}{z_{-}} F\left(\frac{x_{-}}{z_{-}}, \mu_{F}^{2}\right) \times H\left(z_{\pm}, \alpha_{S}(\mu_{R}^{2})\right) + \mathcal{O}\left(\frac{\Lambda^{\#}}{\mu_{F}^{\#}}\right),$$

here $F(x, \mu_F^2) = x f(x, \mu_F^2)$. We assume $\mu_F \simeq \mu_R \simeq \mu$.

- Motivation: resum already in LO large radiative corrections enhanced by logs $\ln(1/z_{\pm})$.
- ▶ **Resummation formalism:** High–Energy Factorization *or* k_T -*factorization*, uses properties of hard scattering amplitudes **Reggeization** in the limit $z_{\pm} \ll 1$, see[Gribov, Levin, Ryskin '84; Collins, Ellis '91, 94; Catani, Hautman '94].

High-Energy Factorization approach: II

Factorization formula in the HEF approach [Collins, Ellis '91; Catani, Hautman '94] PROVEN UP TO NLLA:

$$\sigma^{(\text{HEF})} = \int \frac{dx_1}{x_1} \int \frac{d^2 \mathbf{q}_{T_1}}{\pi} \, \Phi_g(x_1, \mathbf{q}_{T_1}^2, \mu^2) \int \frac{dx_2}{x_2} \int \frac{d^2 \mathbf{q}_{T_2}}{\pi} \, \Phi_g(x_2, \mathbf{q}_{T_2}^2, \mu^2) \, \times \, \mathcal{H}\left(x_{1,2}, \mathbf{q}_{T_{1,2}}^2, \ldots\right)$$

▶ PROCESS INDEPENDENT Unintegrated PDF (uPDF) is a convolution of PDF with resummation factor C_{gg} :

$$\Phi_g(x,\mathbf{q}_T^2,\mu^2) = \int_x^1 \frac{dz}{z} F_g\left(\frac{x}{z},\mu^2\right) \times C_{gg}(z,\mathbf{q}_T,\mu^2)$$

1

▶ PROCESS DEPENDENT *Hard Scattering Coefficient (HSC) H* is calculated in the approximation of *Multi–Regge Kinematics (MRK)*, so it is gauge–invariant.

A sketch of the EFT: I

The **gauge–invariant Lipatov's EFT** for the MRK processes in $QCD_{[Lipatov '95]}$ is formulated in terms of Yang–Mills gluon fields $v_{\mu}^{(i)}(x)$ and *Reggeon fields* A(x) local in the rapidity:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{kin}}\left(A_{+}(x), A_{-}(x)\right) + \sum_{i \in \text{rap.int.}} \left\{ \mathcal{L}_{\text{QCD}}\left(v_{\mu}^{(i)}(x)\right) + \mathcal{L}_{\text{ind}}\left(v_{\mu}^{(i)}(x), A_{+}(x), A_{-}(x)\right) \right\},$$

where $v_{\mu}(x) = -iT_a v_{\mu}^a(x)$ and $A(x) = -iT_a A^a(x)$. Due to the MRK constraints:

$$\partial_+ A_-(x) = \partial_- A_+(x) = 0 \qquad \Rightarrow \qquad A_+(x) = A_+(x_+, \mathbf{x}_T) \text{ and } A_-(x) = A_-(x_-, \mathbf{x}_T),$$

where $\partial_{\pm} \equiv n_{\pm}^{\mu} \partial_{\mu}$. The kinetic part

$$\mathcal{L}_{kin}(A_{+}(x), A_{-}(x)) = 4tr \left[A_{+}(x)\partial_{T}^{2}A_{-}(x)\right]$$

leads to the Reggeon propagator in the form:

$$D_{a_1a_2}^{(\pm)}(q) = \frac{i\delta_{a_1a_2}}{2\mathbf{q}_T^2}.$$

FOR AN OVERVIEW SEE[Nefedov '19; Hentschinski '20].

A sketch of the EFT: II

The induced reggeon–gluon interaction lagrangian part may be expanded in g series:

$$\mathcal{L}_{\text{ind}} = \operatorname{tr}\left[1\left(A_{+}\partial_{T}^{2}v_{-}\right) + \left(-ig\right)\left(\partial_{T}^{2}A_{+}\right)\left(v_{-}\partial_{-}^{-1}v_{-}\right) + \left(-ig\right)^{2}\left(\partial_{T}^{2}A_{+}\right)\left(v_{-}\partial_{-}^{-1}v_{-}\partial_{-}^{-1}v_{-}\right) \right. \\ \left. + \left. \left(+\leftrightarrow-\right)\right] + \mathcal{O}\left(g^{3}\right)$$

The induced vertices may be obtained from this expansion[Lipatov, Kuraev et.al. '05]:

$$\begin{split} \Theta(g^{0}) &: R_{\pm}g & \Delta_{\mu_{1}}^{(\pm)ab_{1}}(q,l_{1}) &= i\mathbf{q}_{T}^{2}\left(n_{\mu_{1}}^{\mp}\right)\delta^{ab_{1}}, \\ \Theta(g^{1}) &: R_{\pm}gg & \Delta_{\mu_{1}\mu_{2}}^{(\pm)ab_{1}b_{2}}(q,l_{1},l_{2}) &= -g\,\mathbf{q}_{T}^{2}\left(n_{\mu_{1}}^{\mp}n_{\mu_{2}}^{\mp}\right)\frac{f^{ab_{1}b_{2}}}{l_{1}^{\pm}}, \\ \Theta(g^{2}) &: R_{\pm}ggg & \Delta_{\mu_{1}\mu_{2}\mu_{3}}^{(\pm)ab_{1}b_{2}b_{3}}(q,l_{1},l_{2}) &= ig^{2}\,\mathbf{q}_{T}^{2}\left(n_{\mu_{1}}^{\mp}n_{\mu_{2}}^{\mp}n_{\mu_{3}}^{\mp}\right) \\ & \times \sum_{(i_{1},i_{2},i_{3})\in S_{3}}\frac{\mathrm{tr}\left[T^{a}T^{b_{i_{1}}}T^{b_{i_{2}}}T^{b_{i_{3}}}+(i_{1}\leftrightarrow i_{3})\right]}{l_{i_{3}}^{\pm}\left(l_{i_{3}}^{\pm}+l_{i_{2}}^{\pm}\right)} \end{split}$$

etc.

Structure of the RRP and RRPP vertices in the EFT formalism

Structure of the effective vertices in the EFT, see[Antonov, Cherednikov, Kuraev, Lipatov '05]:
Rg (induced vertex)

Effective vertices up to $\mathcal{O}(g^4)$ implemented in ReggeQCD_[Nefedov] for FeynArts_[Hahn '01].

Parton Reggeization Approach (PRA)

The PRA based on the modified MRK approximation for QCD amplitudes[Nefedoy, Saleev '20]:

$$\overline{|\mathcal{M}_{gg \to g}^{(\text{mMRK})}|^{2}} = \frac{4g^{2}}{q_{1}^{2}q_{2}^{2}} \frac{P_{gg}(z_{1})}{z_{1}} \frac{P_{gg}(z_{2})}{z_{2}} \times \overline{|\mathcal{A}_{\mathcal{Y}}^{(\text{MRK})}|^{2}} + \mathcal{O}\left(\frac{\mu^{2}}{S}\right)$$

where $z_{1} = q_{1}^{+}/q_{1}^{\prime+}$ and $z_{2} = q_{2}^{-}/q_{2}^{\prime-}$. In this approximation:
 $\mathcal{C}_{gj}^{(\text{LO, mKMRW})}(x, z, \mathbf{q}_{T}^{2}, \mu^{2}) = \frac{\alpha_{s}(\mathbf{q}_{T}^{2})}{2\pi} \frac{T_{g}(x, \mathbf{q}_{T}^{2}, \mu^{2})}{\mathbf{q}_{T}^{2}} z P_{gj}(z) \ \theta\left(\Delta(\mathbf{q}_{T}^{2}, \mu^{2}) - z\right),$

this is *so called* modified Kimber–Martin–Ryskin–Watt model_[KMR '01; MRW '03; Nefedov, Saleev '20]. **Normalization condition:**

$$\int_0^{\mu_F^2} d\mathbf{q}_T^2 \sum_j C_{gj}^{(\text{LO, mKMRW})}(x, z, \mathbf{q}_T^2, \mu^2) = \delta(1-z),$$

 q'_1 . $q_1\downarrow$ $q_2 \uparrow$ $q'_2 \uparrow$

here $j = g, q, \bar{q}$.

logs $\alpha_s \ln (\mathbf{q}_T^2/\mu^2)$ and $\alpha_s \ln^2 (\mathbf{q}_T^2/\mu^2)$ are resummed in the MKMRW uPDFs \Leftrightarrow consistency with *Collins–Soper–Sterman approach*[CSS '85; C '11] · 8/17

BFKL resummation in the PRA

Resummation of logs $\alpha_s^n \ln^n (\hat{s}/(-\hat{t})) \sim \alpha_s^n Y^n$ may be included in the PRA through the **LLA BFKL equation**_[BFKL '76–78], see ALSO TEXTBOOKS[IOFFE, FADIN, LIPATOV '10; KOVCHEGOV, LEVIN '12]:

PROCESS DEPENDENT Impact Factors describe $RR \rightarrow g$ may be obtained from the PRA 2 \rightarrow 1 matrix elements projected on the Pomeron channel_[Fadin et.al. '99]: $\langle cc' | \hat{P}_1 | 0 \rangle = \delta_{cc'} / \sqrt{N_c^2 - 1}$.

PROCESS INDEPENDENT Green function obeys BFKL equation for the Pomeron channel resum logs $\alpha_s^n Y^n$:

$$\frac{\partial G(\mathbf{l}_{T_1},\mathbf{l}_{T_2},Y)}{\partial Y} = K^{(1)} \otimes G(\mathbf{l}_{T_1},\mathbf{l}_{T_2},Y),$$

with the initial condition: $G(\mathbf{l}_{T_1}, \mathbf{l}_{T_2}, Y = 0) = \delta^{(2)}(\mathbf{l}_{T_1} - \mathbf{l}_{T_2})$.

Matching between PRA and BFKL improved PRA

The matching scheme between PRA and BFKL improved PRA[He, Kniehl, Nefedov, Saleev '19]:

$$\sigma^{(PRA+BFKL)} \,=\, \sigma^{(PRA)} \,+\, \sigma^{(BFKL)} \,-\, \sigma^{(BFKL,0)}$$

where $\sigma^{(\text{BFKL})}$ is a convolution of the $\mathcal{H}^{(\text{BFKL})}$ with uPDF, $\sigma^{(\text{BFKL},0)} \sim G(\mathbf{l}_{T_1}, \mathbf{l}_{T_2}, Y = 0)$.

► The BFKL equation has the structure:

Reggeon exchange $\sim \delta^{(2)} (\mathbf{l}_{T_1} - \mathbf{l}_{T_2})$ is the zero BFKL Pomeron approximation already included in the PRA contribution at $Y \rightarrow \infty$ due to \hat{i} -channel propagator Reggeization.

Such contribution should be subtracted \Rightarrow only term resum $\alpha_s^n Y^n$ remains.

Blümlein uPDF (JB)

The Blümlein approach_[Blümlein '95] based on the Collins–Ellis equation_[Collins, Ellis '91] and resummation factor is calculated as a series of α_s .

The LO terms are:

$$\mathcal{C}_{gg}^{(\text{DLA})}\left(z,\mathbf{q}_{T}^{2},\mu^{2}\right) = \frac{\overline{\alpha}_{s}(\mu_{R}^{2})}{\mathbf{q}_{T}^{2}} \begin{cases} J_{0}\left(2\sqrt{\overline{\alpha}_{s}(\mu_{R}^{2})\,\ln\left(\frac{1}{z}\right)\ln\left(\frac{\mu_{F}^{2}}{\mathbf{q}_{T}^{2}}\right)\right),\\ I_{0}\left(2\sqrt{\overline{\alpha}_{s}(\mu_{R}^{2})\,\ln\left(\frac{1}{z}\right)\ln\left(\frac{q_{T}^{2}}{\mu_{F}^{2}}\right)\right), \end{cases}$$

for $\mathbf{q}_T^2 < \mu_F^2$ and $\mathbf{q}_T^2 > \mu_F^2$ respectively, J_0/I_0 are the Bessel functions of first / second kind.

Normalization condition:

$$\int_0^{\mu_F^2} d\mathbf{q}_T^2 \ \mathcal{C}_{gg}^{(\text{DLA})}\left(z, \mathbf{q}_T^2, \mu^2\right) = \boldsymbol{\delta}\left(1-z\right).$$

▶ Note that BFKL logs $\ln(1/z)$ are already included in the resummation factor in this approach.

Results: 0 @ incluisve jet at $\sqrt{S} = 13$ TeV

Inclusive jet production in the PRA.

- ▶ ME for $R + R \rightarrow g$ is already known[Kniehl, Vasin, Saleev '06];
- ▶ The dominant LO contribution is $R + R \rightarrow g \Rightarrow$ test of *gluodynamics approximation*;
- Good description of data at *small / large* p_T as well as at *small / large* y.

Results: I @ MN dijet, CMS '22, $\sqrt{S} = 2.76$ TeV

• The **PRA** based predictions agree with data well up to Y = 8;

- ▶ Inclusion of the BFKL resummation improves PRA predictions at $Y \gtrsim 4$;
- > Predictions with Blümlein uPDFs agree with data at Y < 4 and understimate data at Y > 4.

Results: II @ MN dijet, CMS '16, $\sqrt{S} = 7$ TeV

MN dijets production in the 3 **rap.regions**: Y_1 : |Y| < 3, Y_2 : 3 < |Y| < 6, Y_3 : 6 < |Y| < 9.4

▶ The PRA predictions agree with data well in $Y_{1,2}$, in Y_3 the BFKL resummation is needed;

- ► There are other sources of uncorrelation: FSR / DPS_[Maciula, Szczurek '14] / ...;
- ► Calculations based on the Blümlein uPDFs predicts strong uncorrelation.

Results: III @ MN dijet $\sqrt{S} = 7$ TeV

• The BFKL contribution becomes dominant at $Y \ge 8$;

- ▶ In the region $Y \ge 8$: **PRA** BFKL⁽⁰⁾ \simeq 0;
- ▶ The data at $\sqrt{S} \ge 7$ TeV and $Y \ge 8$ is needed.

The contributions

 $\begin{array}{rcl} \mathrm{BFKL} & \sim & G \\ \mathrm{BFKL}^{(0)} & \sim & \delta^{(2)} \end{array}$

are shown separetly.

In the Regge limit:

 $\mathbf{PRA} - \mathbf{BFKL}^{(0)} = \mathbf{0}.$

Conclusions

- Müeller–Navelet dijet production is studied within the framework of the High–Energy Factorization approach in two ways:
 - i. BFKL improved Parton Reggeization Approach;
 - ii. HEF with Blümlein uPDF;
- The implementation of the BFKL resummation improves Parton Reggeization Approach predictions at large Y;
- We obtain a rather good agreement of our BFKL improved Parton Reggeization Approach predictions with data;
- The BFKL contribution becomes dominant in the Parton Reggeization Approach in the region: $\sqrt{S} \ge 7$ TeV and $Y \ge 8$, so the special study is needed.

Thank you for your attention!

A diagrammatic representation of the PRA amplitude

For derivation of $|\mathcal{M}_{gg \to g(2g)g}^{(\text{mMRK})}|^2$, consider $g(q'_1) + g(q'_2) \to g(k_1) + (2g) + g(k_2)$ subprocess:

$$\begin{split} \mid \mathcal{M}_{gg \to g(2g)g}^{(\mathrm{mMRK})} \mid^{2} &= \left\{ \Gamma_{\mu_{1}\mu_{2}}^{(-)a_{1}b_{1}b_{2}}(-q_{1},-k_{1}) \Gamma_{a_{1}b_{1}b_{2}}^{(-)\mu_{1}\mu_{2}}(-q_{1},-k_{1}) \right\} \\ &\times \left(\frac{1}{4q_{1}^{2}q_{2}^{2}} \right)^{2} \overline{\mid \mathcal{A}_{(2g)}^{(\mathrm{mRK})} \mid^{2}} \\ &\times \left\{ \Gamma_{\mu_{3}\mu_{4}}^{(+)a_{2}b_{3}b_{4}}(-q_{2},-k_{2}) \Gamma_{a_{2}b_{3}b_{4}}^{(+)\mu_{3}\mu_{4}}(-q_{2},-k_{2}) \right\}, \end{split}$$

keeping exact kinematics up to ---:

$$q_{1} = z_{1}q_{1}^{\prime +} \frac{n_{-}}{2} - \frac{\mathbf{q}_{T_{1}}^{2}}{(1-z_{1})q_{1}^{\prime +}} \frac{n_{+}}{2} + q_{T_{1}}$$

$$q_{2} = -\frac{\mathbf{q}_{T_{2}}^{2}}{(1-z_{2})q_{2}^{\prime -}} \frac{n_{-}}{2} z_{2}q_{2}^{\prime -} \frac{n_{+}}{2} + q_{T_{2}}.$$

Rapidity ordering KMR cutoff: $\Delta(\mathbf{q}_T^2, \mu^2) = \mu/(|\mathbf{q}_T| + \mu).$

This kind of approximation is actively used [Martin et.al. '03; Andersen et.al. '09; Nefedov, Saleev '20].

