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Motivation: «small x» activities at LHC

Two most important kinematical regimes:

i. Bjorken limit: (−t̂)∼ Q2→ ∞ while ŝ∼ (−t̂) ⇒ DGLAP logs αn
s lnn ((−t̂)/Λ2).

ii. Regge limit: ŝ� (−t̂) ⇒ BFKL logs αn
s lnn (ŝ/(−t̂)).

Search for BFKL evolution manifestations:

I Müeller–Navelet dijets[Müeller, Navelet ’87]:
I Experimental data at large Y [CMS ’16,20];
I Theoretical studies using collinear factorization[Szymanowski et.al.; Papa et.al.; Sabio–Vera et.al.; Kim et.al.];

I Higgs boson+jet production, see[Papa et.al.].

There is an approach beyond collinear factorization–High–Energy Factorization (HEF).

In this talk: Müeller–Navelet dijet production in the HEF with BFKL via gluodynamics.
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High–Energy Factorization approach: I

Consider some process:
p (P1) + p (P2) → Y (p±,pT ) + X ,

where P1,2 =
(
P±/2

)
n∓ with P± =

√
S. We use Sudakov light–cone basis vectors n±:

(n±,n∓) = 2, p± = (p,n±), so y(p) = (1/2) ln(p+/p−). Introduce x± = p±/P±, then:

σ
(CPM) =

1∫

x+

dz+
z+

F
(

x+
z+

,µ2
F

) 1∫

x−

dz−
z−

F
(

x−
z−

,µ2
F

)
×H

(
z±,αS(µ

2
R)
)
+ O

(
Λ#

µ#
F

)
,

here F(x,µ2
F ) = x f (x,µ2

F ). We assume µF ' µR ' µ .

I Motivation: resum already in LO large radiative corrections enhanced by logs ln(1/z±).

I Resummation formalism: High–Energy Factorization or kT –factorization, uses properties
of hard scattering amplitudes Reggeization in the limit z±� 1 ,
see[Gribov, Levin, Ryskin ’84; Collins, Ellis ’91, 94; Catani, Hautman ’94].
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High–Energy Factorization approach: II

1≪ Y+ Y−≫ 1

Cgg(z+ ,qT1
, . . .)

qT1→ ← qT2

Cgg(z− ,qT2 , . . .)

Fg

(
x+
z+
,µ2

F

)
Fg

(
x−
z−
,µ2

F

)
H

Factorization formula in the HEF approach[Collins, Ellis ’91; Catani, Hautman ’94] proven up to nlla:

σ
(HEF) =

∫ dx1

x1

∫ d2qT1

π
Φg(x1,q2

T1
,µ2)

∫ dx2

x2

∫ d2qT2

π
Φg(x2,q2

T2
,µ2) × H

(
x1,2,q2

T1,2
, . . .
)

I process independent Unintegrated PDF (uPDF) is a convolution of PDF with resummation
factor Cgg:

Φg(x,q2
T ,µ

2) =

1∫

x

dz
z

Fg

(
x
z
,µ2
)
×Cgg(z,qT ,µ

2)

I process dependent Hard Scattering Coefficient (HSC) H is calculated in the approximation
of Multi–Regge Kinematics (MRK), so it is gauge–invariant.
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A sketch of the EFT: I

The gauge–invariant Lipatov’s EFT for the MRK processes in QCD[Lipatov ’95] is formulated in
terms of Yang–Mills gluon fields v(i)µ (x) and Reggeon fields A(x) local in the rapidity:

Leff = Lkin (A+(x),A−(x)) + ∑
i∈rap.int.

{
LQCD

(
v(i)µ (x)

)
+Lind

(
v(i)µ (x),A+(x),A−(x)

)}
,

where vµ (x) =−iTava
µ (x) and A(x) =−iTaAa(x). Due to the MRK constraints:

∂+A−(x) = ∂−A+(x) = 0 ⇒ A+(x) = A+(x+,xT ) and A−(x) = A−(x−,xT ),

where ∂± ≡ nµ

±∂µ . The kinetic part

Lkin (A+(x),A−(x)) = 4tr
[
A+(x)∂

2
T A−(x)

]

leads to the Reggeon propagator in the form:

D(±)
a1a2(q) =

iδa1a2

2q2
T

.

for an overview see[Nefedov ’19; Hentschinski ’20].
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A sketch of the EFT: II

The induced reggeon–gluon interaction lagrangian part may be expanded in g series:

Lind = tr
[
1
(

A+∂
2
T v−

)
+(−ig)

(
∂

2
T A+

)(
v−∂

−1
− v−

)
+(−ig)2

(
∂

2
T A+

)(
v−∂

−1
− v−∂

−1
− v−

)

+ (+↔−)
]
+ O

(
g3
)

The induced vertices may be obtained from this expansion[Lipatov, Kuraev et.al. ’05]:

O(g0) : R±g ∆(±)ab1
µ1 (q, l1) = iq2

T

(
n∓µ1

)
δ

ab1 ,

O(g1) : R±gg ∆(±)ab1b2
µ1µ2 (q, l1, l2) = −gq2

T

(
n∓µ1

n∓µ2

) f ab1b2

l±1
,

O(g2) : R±ggg ∆(±)ab1b2b3
µ1µ2µ3 (q, l1, l2) = ig2 q2

T

(
n∓µ1

n∓µ2
n∓µ3

)

× ∑
(i1,i2,i3)∈S3

tr
[
T aT bi1 T bi2 T bi3 +(i1↔ i3)

]

l±i3

(
l±i3 + l±i2

)

etc.
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Structure of the RRP and RRPP vertices in the EFT formalism

Structure of the effective vertices in the EFT, see[Antonov, Cherednikov, Kuraev, Lipatov ’05]:
I Rg (induced vertex)

�

I RRg

� = � + � + �
I RRgg

� = � + � + �
Effective vertices up to O

(
g4) implemented in ReggeQCD[Nefedov] for FeynArts[Hahn ’01]. 7 / 17



Parton Reggeization Approach (PRA)

The PRA based on the modified MRK approximation for QCD amplitudes[Nefedov, Saleev ’20]:

|M(mMRK)
gg→gYg |2 =

4g2

q2
1q2

2

Pgg(z1)

z1

Pgg(z2)

z2
×|A(MRK)

Y |2 +O

(
µ2

S

)

where z1 = q+1 /q′+1 and z2 = q−2 /q′−2 . In this approximation:

C
(LO, mKMRW)
g j (x,z,q2

T ,µ
2) =

αs(q2
T )

2π

Tg(x,q2
T ,µ

2)

q2
T

zPg j(z) θ

(
∆(q2

T ,µ
2)− z

)
,

this is so called modified Kimber–Martin–Ryskin–Watt
model[KMR ’01; MRW ’03; Nefedov, Saleev ’20]. Normalization condition:

∫
µ2

F

0
dq2

T ∑
j
C
(LO, mKMRW)
g j (x,z,q2

T ,µ
2) = δ (1− z) ,

here j = g,q, q̄.

q′
1 ↓ k1 →

q1 ↓

q2 ↑ p2 →

q′
2 ↑

p1 →

k2 →

logs αs ln
(
q2

T /µ2) and αs ln2 (q2
T /µ2) are resummed in the mKMRW uPDFs⇔

consistency with Collins–Soper–Sterman approach[CSS ’85; C ’11]. 8 / 17



BFKL resummation in the PRA

Resummation of logs αn
s lnn (ŝ/(−t̂))∼ αn

s Y n may be included in the PRA through the LLA
BFKL equation[BFKL ’76–78], see also textbooks[Ioffe, Fadin, Lipatov ’10; Kovchegov, Levin ’12]:

dH(BFKL)

d2pT1 dy1 d2pT2 dy2
=

1
4x1x2S2

∫ d2lT1

2π

∫ d2lT2

2π

× Ψ(+) (lT1 ,pT1 ,y1)×G(lT1 , lT2 ,Y )×Ψ(−) (lT2 ,pT2 ,y2)

process dependent Impact Factors describe RR→ g may be
obtained from the PRA 2→ 1 matrix elements projected on the
Pomeron channel[Fadin et.al. ’99]: 〈cc′ | P̂1 | 0〉= δcc′/

√
N2

c −1.

process independent Green function obeys BFKL equation for the
Pomeron channel resum logs αn

s Y n:

∂G(lT1 , lT2 ,Y )
∂Y

= K(1)⊗G(lT1 , lT2 ,Y ) ,

with the initial condition: G(lT1 , lT2 ,Y = 0) = δ (2) (lT1 − lT2) .

q1 ↓

l1 ↓

p1 →

l2 ↓

q2 ↑ p2 →

Ψ(+)(. . .)

Ψ(−)(. . .)

G(lT1 , lT2 ,Y )
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Matching between PRA and BFKL improved PRA

The matching scheme between PRA and BFKL improved PRA[He, Kniehl, Nefedov, Saleev ’19]:

σ
(PRA+BFKL) = σ

(PRA) + σ
(BFKL) − σ

(BFKL,0),

where σ (BFKL) is a convolution of theH(BFKL) with uPDF, σ (BFKL,0) ∼ G(lT1 , lT2 ,Y = 0).

I The BFKL equation has the structure:

∂
∂Y G = +

G

Reggeon exchange
|
|
|
|

|
|
|
|
∼ δ (2) (lT1 − lT2) is the zero BFKL Pomeron approximation already

included in the PRA contribution at Y → ∞ due to t̂–channel propagator Reggeization.

Such contribution should be subtracted ⇒ only term resum αn
s Y n remains.
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Blümlein uPDF (JB)

The Blümlein approach[Blümlein ’95] based on the Collins–Ellis equation[Collins, Ellis ’91] and
resummation factor is calculated as a series of αs.

The LO terms are:

C
(DLA)
gg

(
z,q2

T ,µ
2
)
=

αs(µ
2
R)

q2
T





J0

(
2
√

αs(µ2
R) ln

( 1
z
)

ln
(

µ2
F

q2
T

))
,

I0

(
2
√

αs(µ2
R) ln

( 1
z
)

ln
(

q2
T

µ2
F

))
,

for q2
T < µ2

F and q2
T > µ2

F respectively, J0/I0 are the Bessel
functions of first / second kind.

Normalization condition:
∫

µ2
F

0
dq2

T C
(DLA)
gg

(
z,q2

T ,µ
2
)
= δ (1− z) .

I Note that BFKL logs ln(1/z) are already included in the
resummation factor in this approach.

p− → p′− ≃ p−

k−
1 ≪ p−

...

k−
n ≪ k−

n−1q2 ↑

q1 ↓

H
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Results: 0 @ incluisve jet at
√

S = 13 TeV

Inclusive jet production in the PRA.
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dσ d
pje

t
T

[
pb G
eV

]

CMS–2016
p + p→ jet + X√

S = 13 TeV

114 <pT < 2000 GeV

Y1 : |y|< 0.5,

Y2 : 0.5 < |y|< 1.0,

Y3 : 1.0 < |y|< 1.5,

Y4 : 1.5 < |y|< 2.0,

Y5 : 2.0 < |y|< 2.5,

Y6 : 2.5 < |y|< 3.0,

Y7 : 3.2 < |y|< 4.7.

I ME for R+R→ g is already known[Kniehl, Vasin, Saleev ’06];

I The dominant LO contribution is R+R→ g⇒ test of gluodynamics approximation;

I Good description of data at small / large pT as well as at small / large y.
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Results: I @ MN dijet, CMS ’22,
√

S = 2.76 TeV
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b]

CMS–2022√
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Y
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T
he
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y/

D
at

a

I The PRA based predictions agree with data well up to Y = 8;

I Inclusion of the BFKL resummation improves PRA predictions at Y & 4;

I Predictions with Blümlein uPDFs agree with data at Y < 4 and understimate data at Y > 4.
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Results: II @ MN dijet, CMS ’16,
√

S = 7 TeV

MN dijets production in the 3 rap.regions: Y1 : |Y |< 3, Y2 : 3 < |Y |< 6, Y3 : 6 < |Y |< 9.4

1 2 3

10−2

10−1

100

1 σ
dσ d∆

φ

Y1

CMS–2016√
S = 7 TeV

1 2 3
∆φ

Y2

1 2 3

Y3

I The PRA predictions agree with data well in Y1,2, in Y3 the BFKL resummation is needed;

I There are other sources of uncorrelation: FSR / DPS[Maciula, Szczurek ’14] / . . . ;

I Calculations based on the Blümlein uPDFs predicts strong uncorrelation.
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Results: III @ MN dijet
√

S = 7 TeV

101

102

103

104

105

106

107
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A

+
B
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L

The contributions

BFKL ∼ G

BFKL(0) ∼ δ
(2)

are shown separetly.

In the Regge limit:

PRA−BFKL(0) = 0.

I The BFKL contribution becomes dominant at Y ≥ 8;

I In the region Y ≥ 8: PRA−BFKL(0) ' 0;

I The data at
√

S≥ 7 TeV and Y ≥ 8 is needed.
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Conclusions

I Müeller–Navelet dijet production is studied within the framework of the High–Energy
Factorization approach in two ways:

i. BFKL improved Parton Reggeization Approach;
ii. HEF with Blümlein uPDF;

I The implementation of the BFKL resummation improves Parton Reggeization Approach
predictions at large Y ;

I We obtain a rather good agreement of our BFKL improved Parton Reggeization Approach
predictions with data;

I The BFKL contribution becomes dominant in the Parton Reggeization Approach in the
region:

√
S≥ 7 TeV and Y ≥ 8, so the special study is needed.

Thank you for your attention!
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A diagrammatic representation of the PRA amplitude

For derivation of |M(mMRK)
gg→g(2g)g |2, consider g (q′1)+g (q′2)→ g (k1)+(2g)+g (k2) subprocess:

|M(mMRK)
gg→g(2g)g |2 =

{
Γ(−)a1b1b2

µ1µ2 (−q1,−k1) Γ(−)µ1µ2
a1b1b2

(−q1,−k1)
}

×
(

1
4q2

1q2
2

)2

|A(MRK)
(2g) |2

×
{

Γ(+)a2b3b4
µ3µ4 (−q2,−k2) Γ(+)µ3µ4

a2b3b4
(−q2,−k2)

}
,

keeping exact kinematics up to −−−:

q1 = z1q′+1
n−
2
−

q2
T1

(1− z1)q′+1

n+
2

+qT1 ,

q2 = −
q2

T2

(1− z2)q′−2

n−
2

z2q′−2
n+
2

+qT2 .

Rapidity ordering KMR cutoff: ∆
(
q2

T ,µ
2)= µ/(|qT |+µ).

q′
1 ↓ k1 →

q1 ↓

q2 ↑ p2 →

q′
2 ↑

p1 →

k2 →

This kind of approximation is actively used[Martin et.al. ’03; Andersen et.al. ’09; Nefedov, Saleev ’20].
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