Associated J/ψ and photon production in the Parton Reggeization approach at high energy

¹Alimov L., ^{1,2}Saleev V., ^{1,2}Karpishkov A.

¹Samara University ²Joint Institute for Nuclear Research

ICPPA-2024

Introduction

The experimental study of associated production of $J/\psi\gamma$ in pp collisions is of considerable interest

- for verifying predictions of perturbative quantum chromodinamics (QCD) and various models of heavy quark hadronization into heavy quarkonium;
- to obtain information about the gluon parton distribution function (PDF), including the transverse momentum dependent (TMD) gluon PDF.

At the high transverse momentum, $p_{T\psi} \gg m_\psi$

the initial parton transverse momentum may be neglected, is able to use collinear parton model CPM.

At the low transverse momentum $p_{T\psi} \ll m_\psi$

the approach must be depended on a non-perturbative transverse momenta of initial partons. It is able to use the TMD factorization approach, well-know as TMD parton model.

At the intermediate range of transverse momenta $p_{T\psi} \simeq m_\psi$

It is able to use different methods of CPM and TMD predictions merging. There is another way at high energy — Parton Reggeization Approach (PRA)

PRA

Parton Reggeization approach (PRA) is a scheme of k_T-factorization, which is based on modified multi-Regge kinematic's (mMRK) approximation of the QCD. The Reggeized parton amplitudes are described by the Lipatov's gauge invariant effective field theory (EFT). [L.N. Lipatov (1995)]. The cross section is written as a convolution.

 $d\sigma(pp \rightarrow J/\psi\gamma) = \sum_{a,b} \int_{0}^{1} \frac{dx_{1}}{x_{1}} \int \frac{d^{2}q_{1T}}{\pi} \Phi_{a}(x_{1}, q_{1T}^{2}, \mu^{2}) \int_{0}^{1} \frac{dx_{2}}{x_{2}} \int \frac{d^{2}q_{2T}}{\pi} \Phi_{b}(x_{2}, q_{2T}^{2}, \mu^{2}) \times d\hat{\sigma}(ab \rightarrow J/\psi\gamma)$

where *a*, *b* are parton types in parton sub-processes a = g, s, u, d; $b = g, \bar{s}, \bar{u}, \bar{d}$. The parton cross section of the sub-process $a(q_1) + b(q_2) \rightarrow J/\psi(p) + \gamma(k)$ is written in a standard way

$$d\hat{\sigma}(ab o J/\psi\gamma) = (2\pi)^4 \delta^{(4)}(q_1 + q_2 - p - k) rac{\overline{|M|^2}_{PRA}}{2x_1 x_2 s} rac{d^3 p}{(2\pi)^3 2 p^0} rac{d^3 k}{(2\pi)^3 2 k^0}$$

• $\Phi_{a,b}(x, q_T^2, \mu^2)$ is modified Kimber-Martin-Ryskin-Watt (mKMRW) PDFs with exact normalization.

[M. A. Nefedov, V. A. Saleev (2020)]

$$\int_{0}^{\mu^{2}} dq_{T}^{2} \Phi_{a,b}(x, q_{T}^{2}, \mu^{2}) = x f_{a,b}(x, \mu^{2})$$

NRQCD

 The quarkonium wave function can be written as a series expansion in terms of the relative velocity of quarks v² ~ 0.2 - -0.3 using orthogonal color-singlet/octet states wavefunctions.
 [G. T. Bodwin, E. Braaten, G. P. Lepage (1995)]

 $|J/\psi\rangle = \mathcal{O}(v^0)|c\bar{c}[{}^3S_1^{(1)}]\rangle + \mathcal{O}(v)|c\bar{c}[{}^3P_J^{(8)}]g\rangle + \mathcal{O}(v^2)|c\bar{c}[{}^1S_0^8]g\rangle + \dots$

Then, the heavy quarkonium production cross section can be written as the sum of the subprocess cross sections multiplied by a Long-Distance Matrix Elements (LDMEs). N_{col} = 2N_c, N_c² - 1 for color-singlet and color-octet states accordingly; N_{pol} = 2J + 1.

$$d\hat{\sigma}(ab
ightarrow J/\psi\gamma) = \sum_{n} d\hat{\sigma}(ab
ightarrow c\bar{c}[^{2S+1}L_{J}^{(1,8)}]\gamma) imes rac{\langle \mathcal{O}^{J/\psi}[^{2S+1}L_{J}^{(1,8)}]
angle}{N_{col}N_{pol}}$$

A special case is the Color Singlet Model (CSM), which takes into account only the general contribution from the color singlet state

$$d\hat{\sigma}(ab
ightarrow J/\psi\gamma) = d\hat{\sigma}(ab
ightarrow car{c}[^3S_1^{(1)}]\gamma) imes rac{\langle \mathcal{O}^{J/\psi}[^3S_1^{(1)}]
angle}{6N_c}$$

⟨O^{J/ψ}[³S₁⁽¹⁾]⟩ = 1.3 GeV³ is calculated in the potential model or extracted from decay width Γ(J/ψ → μ⁺μ[−]), but color-octet LDMEs are model dependent. Color-octet LDMEs were extracted from single J/ψ production data in the PRA. [M. A. Nefedov, V. A. Saleev, A. V. Shipilova (2013)]

ICEM

In the Improved Color Evaporation Model (ICEM) the cross section for the associated production of J/\u03c6 and direct photon is related to the cross section for the associated production of cc-pair and direct photon in the Single Parton Scattering (SPS) as follows:

$$d\hat{\sigma}(ab \rightarrow J/\psi\gamma) \simeq \mathcal{F}^{\psi} \int_{m_{\psi}}^{2m_{D}} dM \frac{d\hat{\sigma}(ab \rightarrow c\bar{c}\gamma)}{dM} \Big|_{p_{T}=(M/m_{\psi})p_{T\psi}}$$

- The phenomenological coefficient *F^ψ* is associated with the hadronization probability.
 [Y.-Q. Ma, R. Vogt (2016)]
- ▶ On the LO PRA, we have only two parton sub-processes, but sub-processes with $q\bar{q}$ initial state is neglectable small then we take into account only $R^+R^- \rightarrow c\bar{c}\gamma$.
- F^{J/ψ} = 0.02 has been obtained by a fit of the prompt J/ψ production at the LHC.
 [V. A. Saleev, A. A. Chernyshev (2022)]
- Another way in the PRA-ICEM calculation is to use Monte-Karlo generator KaTie.
 [A. van Hameren]

We have done cross check for all calculations in the PRA-ICEM within the KaTie, and find good agreement.

EFT's diagrams

- Amplitudes include effective vertexes and Reggeized gluons in the initial state.
- Set of Feynman diagram are the same for both the NRQCD and the ICEM, but in the NRQCD the cc̄ spinors are replaced by a projector with intermediate-state quantum numbers.

NRQCD: color-singlet and color-octet contributions

•
$$p_{T\gamma} > 5 \ GeV; \ |y_{J/\psi}|, |y_{\gamma}| < 3.$$

- ▶ Contributions from octet states becomes comparable to the singlet state contribution only at $p_{TJ/\psi} > 35 \text{ GeV}$ than we used CSM for prediction at $p_{TJ/\psi} < 35 \text{ GeV}$.
- The cascade decay are negligible.

 $\blacktriangleright |y_{J/\psi}|, |y_{\gamma}| < 3.$

- NLO CPM-CSM computation [R. Li, J.-X. Wang (2009)]
- Our PRA-CSM calculation slightly overestimated the NLO CPM-CSM cross section. It is interesting because in the single J/\u03c6 production the results obtained in the LO PRA and the NLO CPM using the NRQCD are approximately coincided.

[A. Karpishkov, M. Nefedov, V. Saleev (2021)].

LHC $\sqrt{s} = 13$ TeV predictions

- ► $p_{T\gamma} > 5 \ GeV;$ $|y_{J/\psi}|, |y_{\gamma}| < 2.$
- There are significant disparity in the PRA predictions using different hadronization models.

LHC $\sqrt{s} = 13$ TeV predictions

$$p_{T\gamma} > 5 \ GeV;$$

$$|y_{J/\psi}|, |y_{\gamma}| < 2.$$

•
$$\Delta y = |y_{J/\psi} - y_{\gamma}|;$$

 $\Delta \phi = |\phi_{J/\psi} - \phi_{\gamma}|;$
M is J/ψ and γ pair
invariant mass;

$$A_T = \frac{\rho_{TJ/\psi} - \rho_{T\gamma}}{\rho_{TJ/\psi} + \rho_{T\gamma}}.$$

LHC $\sqrt{s} = 13$ TeV predictions

*p*_{Tγ} > 5 GeV; |*y*_{J/ψ}|, |*y*_γ| < 2.
 Y is J/ψ and γ pair rapidity.

Summary

- We confirm previously obtained result that in the process of the associated J/ψ and direct photon production color-octet contributions can be neglected.
- We can neglect small contribution from the quark-antiquark annihilation processes at the energy $\sqrt{s} = 13 14$ TeV, and the same way, the decay contributions to the associated J/ψ and the direct photon cross sections can be neglected as well.
- ▶ Was find surprising sufficient differences in the PRA-CSM and the PRA-ICEM predictions which become large when the $p_{T\gamma}$ increases. So experimental measurements of the J/ψ and large- $p_{T\gamma}$ photon production cross section can be potentially used to distinguish between the ICEM and the NRQCD.

Thank you for your attention!