Associated J/ψ and photon production in the Parton Reggeization approach at high energy

¹Alimov L., ^{1,2}Saleev V., ^{1,2}Karpishkov A.

¹ Samara University 2Joint Institute for Nuclear Research

ICPPA-2024

Introduction

The experimental study of associated production of $J/\psi\gamma$ in pp collisions is of considerable interest

- ▶ for verifying predictions of perturbative quantum chromodinamics (QCD) and various models of heavy quark hadronization into heavy quarkonium;
- \triangleright to obtain information about the gluon parton distribution function (PDF), including the transverse momentum dependent (TMD) gluon PDF.

At the high transverse momentum, $p_{\mathcal{T}_{\psi}} \gg m_{\psi}$

 \triangleright the initial parton transverse momentum may be neglected, is able to use collinear parton model CPM.

At the low transverse momentum $p_{\mathcal{T}_{\psi}} \ll m_{\psi}$

 \blacktriangleright the approach must be depended on a non-perturbative transverse momenta of initial partons. It is able to use the TMD factorization approach, well-know as TMD parton model.

At the intermediate range of transverse momenta $p_{\mathcal{T}\psi} \simeq m_{\psi}$

▶ It is able to use different methods of CPM and TMD predictions merging. There is another way at high energy — Parton Reggeization Approach (PRA)

PRA

▶ Parton Reggeization approach (PRA) is a scheme of k_T -factorization, which is based on modified multi-Regge kinematic's (mMRK) approximation of the QCD. The Reggeized parton amplitudes are described by the Lipatov's gauge invariant effective field theory (EFT). [L.N. Lipatov (1995)].

The cross section is written as a convolution:

$$
d\sigma(pp \to J/\psi\gamma) = \sum_{a,b} \int_{0}^{1} \frac{dx_1}{x_1} \int \frac{d^2q_{1T}}{\pi} \Phi_a(x_1, q_{1T}^2, \mu^2) \int_{0}^{1} \frac{dx_2}{x_2} \int \frac{d^2q_{2T}}{\pi} \Phi_b(x_2, q_{2T}^2, \mu^2) \times d\hat{\sigma}(ab \to J/\psi\gamma)
$$

where a, b are parton types in parton sub-processes $a = g, s, u, d; b = g, \overline{s}, \overline{u}, \overline{d}$. **▶ The parton cross section of the sub-process** $a(q_1) + b(q_2) \rightarrow J/\psi(p) + \gamma(k)$ **is** written in a standard way

$$
d\hat{\sigma}(ab \to J/\psi \gamma) = (2\pi)^4 \delta^{(4)}(q_1 + q_2 - p - k) \frac{\overline{|M|^2}_{PRA}}{2x_1x_2s} \frac{d^3p}{(2\pi)^3 2p^0} \frac{d^3k}{(2\pi)^3 2k^0}
$$

 $\blacktriangleright \Phi_{a,b}(x,q_T^2,\mu^2)$ is modified Kimber-Martin-Ryskin-Watt (mKMRW) PDFs with exact normalization.

[M. A. Nefedov, V. A. Saleev (2020)]

$$
\int_{0}^{\mu^2} dq_7^2 \Phi_{a,b}(x, q_7^2, \mu^2) = x f_{a,b}(x, \mu^2)
$$

NRQCD

▶ The quarkonium wave function can be written as a series expansion in terms of the relative velocity of quarks $v^2 \sim$ 0.2 $-$ 0.3 using orthogonal color-singlet/octet states wavefunctions. [G. T. Bodwin, E. Braaten, G. P. Lepage (1995)]

 $|J/\psi\rangle=\mathcal{O}(v^0)|c\bar{c}[^3S_1^{(1)}]\rangle+\mathcal{O}(v)|c\bar{c}[^3P_J^{(8)}]g\rangle+\mathcal{O}(v^2)|c\bar{c}[^1S_0^8]g\rangle+\dots$

 \triangleright Then, the heavy quarkonium production cross section can be written as the sum of the subprocess cross sections multiplied by a Long-Distance Matrix Elements (LDMEs). $N_{col} = 2N_c, N_c^2 - 1$ for color-singlet and color-octet states accordingly; $N_{pol} = 2J + 1.$

$$
d\hat{\sigma}(ab \to J/\psi\gamma) = \sum_{n} d\hat{\sigma}(ab \to c\bar{c}[^{2S+1}L_{J}^{(1,8)}]\gamma) \times \frac{\langle \mathcal{O}^{J/\psi}[^{2S+1}L_{J}^{(1,8)}]\rangle}{N_{col}N_{pol}}
$$

▶ A special case is the Color Singlet Model (CSM), which takes into account only the general contribution from the color singlet state

$$
d\hat{\sigma}(ab \to J/\psi \gamma) = d\hat{\sigma}(ab \to c\bar{c}[{}^3S_1^{(1)}]\gamma) \times \frac{\langle \mathcal{O}^{J/\psi}[{}^3S_1^{(1)}]\rangle}{6N_c}
$$

 $\blacktriangleright \ \langle {\cal O}^{J/\psi} [{}^3S_1^{(1)}]\rangle = 1.3 \; GeV^3$ is calculated in the potential model or extracted from decay width $\mathsf{\Gamma}(J/\psi\to\mu^+\mu^-)$, but color-octet LDMEs are model dependent. Color-octet LDMEs were extracted from single J/ψ production data in the PRA. [M. A. Nefedov, V. A. Saleev, A. V. Shipilova (2013)]

▶ In the Improved Color Evaporation Model (ICEM) the cross section for the associated production of J/ψ and direct photon is related to the cross section for the associated production of $c\bar{c}$ -pair and direct photon in the Single Parton Scattering (SPS) as follows:

$$
d\hat{\sigma}(ab \to J/\psi\gamma) \simeq \mathcal{F}^{\psi} \int\limits_{m_{\psi}}^{2m_{D}} dM \frac{d\hat{\sigma}(ab \to c\bar{c}\gamma)}{dM} \Big|_{p_{T}=(M/m_{\psi})p_{T\psi}}
$$

- \blacktriangleright The phenomenological coefficient \mathcal{F}^{ψ} is associated with the hadronization probability. [Y.-Q. Ma, R. Vogt (2016)]
- ▶ On the LO PRA, we have only two parton sub-processes, but sub-processes with $q\bar{q}$ initial state is neglectable small then we take into account only $R^+R^-\to c\bar{c}\gamma$.
- \blacktriangleright $\mathsf{F}^{J/\psi} = 0.02$ has been obtained by a fit of the prompt J/ψ production at the LHC. [V. A. Saleev, A. A. Chernyshev (2022)]
- ▶ Another way in the PRA-ICEM calculation is to use Monte-Karlo generator KaTie. [A. van Hameren]

We have done cross check for all calculations in the PRA-ICEM within the KaTie, and find good agreement.

EFT's diagrams

- ▶ Amplitudes include effective vertexes and Reggeized gluons in the initial state.
- ▶ Set of Feynman diagram are the same for both the NRQCD and the ICEM, but in the NRQCD the $c\bar{c}$ spinors are replaced by a projector with intermediate-state quantum numbers.

NRQCD: color-singlet and color-octet contributions

$$
\blacktriangleright \ p_{T\gamma} > 5 \ GeV; \ |y_{J/\psi}|, |y_{\gamma}| < 3.
$$

- ▶ Contributions from octet states becomes comparable to the singlet state contribution only at $p_{TJ/\psi} > 35$ GeV than we used CSM for prediction at $p_{TJ/\psi}$ < 35 GeV.
- \blacktriangleright The cascade decay are negligible.

▶ $|y_{J/\psi}|, |y_{\gamma}| < 3$.

- ▶ NLO CPM-CSM computation [R. Li, J.-X. Wang (2009)]
- ▶ Our PRA-CSM calculation slightly overestimated the NLO CPM-CSM cross section. It is interesting because in the single J/ψ production the results obtained in the LO PRA and the NLO CPM using the NRQCD are approximately coincided.

[A. Karpishkov, M. Nefedov, V. Saleev (2021)].

LHC $\sqrt{s} = 13$ TeV predictions

- ▶ $p_{T\gamma} > 5$ GeV; $|y_{J/\psi}|, |y_{\gamma}| < 2.$
- \blacktriangleright There are significant disparity in the PRA predictions using different hadronization models.

LHC $\sqrt{s} = 13$ TeV predictions

$$
p_{T\gamma} > 5 \text{ GeV};
$$

$$
|y_{J/\psi}|, |y_{\gamma}| < 2.
$$

$$
\Delta y = |y_{J/\psi} - y_{\gamma}|;
$$

\n
$$
\Delta \phi = |\phi_{J/\psi} - \phi_{\gamma}|;
$$

\n*M* is J/ψ and γ pair
\ninvariant mass;

$$
A_T = \frac{p_{TJ/\psi} - p_{T\gamma}}{p_{TJ/\psi} + p_{T\gamma}}.
$$

LHC $\sqrt{s} = 13$ TeV predictions

▶ $p_{T\gamma} > 5$ GeV; $|y_{J/\psi}|, |y_{\gamma}| < 2$. ▶ Y is J/ψ and γ pair rapidity.

Summary

- \triangleright We confirm previously obtained result that in the process of the associated J/ψ and direct photon production color-octet contributions can be neglected.
- ▶ We can neglect small contribution from the quark-antiquark annihilation processes at the energy $\sqrt{s} = 13 - 14$ TeV, and the same way, the decay contributions to the associated J/ψ and the direct photon cross sections can be neglected as well.
- ▶ Was find surprising sufficient differences in the PRA-CSM and the PRA-ICEM predictions which become large when the $p_{T\gamma}$ increases. So experimental measurements of the J/ψ and large- $p_{\tau\gamma}$ photon production cross section can be potentially used to distinguish between the ICEM and the NRQCD.

Thank you for your attention!