# Inverse gluon emission in dilepton production at CMS LHC

V.A. Zykunov (JINR, GSU)

### ICPPA–2024 VII International Conference on Particle Physics and Astrophysics Moscow, 22–25 October, 2024

1/23

#### Introduction

Despite the fact that the Standard Model (SM) keeps the status of consistent and experimentally confirmed theory, the search of New Physics

- $\star$  the supersymmetry,
- 🖈 🛛 M-theory,
- 🖈 🛛 DM-particles,
- 🖈 🛛 axions,
- $\star$  feebly interacting particles,
- $\star$  extra spatial dimensions,
- 🖈 🛛 extra neutral gauge bosons, etc.

is continued.

One of powerful tool in the modern experiments at LHC is the investigation of **dilepton production** 

$$pp \to \ell^+ \ell^- X, \quad \ell = \mu, e$$
 (1)

at large invariant mass of lepton pair:  $M \ge 1$  TeV.

The measured observable quantities:

- $\star$  differential cross section  $\frac{d\sigma}{dM}$ ,
- $\star$  double-differential cross section  $\frac{d^2\sigma}{dMdy}$ ,
- $\star$  forward-backward asymmetry  $A_{FB}$

are consistent with the SM predictions at

$$\sqrt{S}$$
 = 7–8 TeV (19.7 fb<sup>-1</sup>) for  $M \le 2$  TeV,  
 $\sqrt{S}$  = 13 TeV (85 fb<sup>-1</sup>) for  $M \le 3$  TeV

 $(\sqrt{S} - \text{total energy in c.m.s. of hadrons}, M - \text{dilepton } \ell^+ \ell^- \text{ invariant mass}, y - \text{dilepton rapidity})$ 

- $\star$  NNLO RCs are taken into account by using of FEWZ,
- \star NNLO PDFs are CT10 NNLO and NNPDF2.1.

#### Four mechanisms of dilepton production



Figure 1: The Drell–Yan process, the photon-photon fusion, inverse gluon or  $\gamma$  emission with quark, inverse  $\gamma$  emission with muon.

#### Notations, invariants, coupling constants

The standard set of **Mandelstam invariants** for the partonic elastic scattering (with  $p_1 + p_2 = p_3 + p_4$ ):

$$s = (p_1 + p_2)^2, \quad t = (p_1 - p_3)^2, \quad u = (p_2 - p_3)^2.$$
 (2)

The propagator for *j*-boson depends on its mass  $m_j$  and width  $\Gamma_j$ :

$$D_j(q) = \frac{1}{q^2 - m_j^2 + im_j\Gamma_j}, \quad j = \gamma, Z.$$
(3)

Suitable combinations of coupling constants are:

$$\lambda_{f+}^{i,j} = v_f^i v_f^j + a_f^i a_f^j, \quad \lambda_{f-}^{i,j} = v_f^i a_f^j + a_f^i v_f^j,$$
(4)

$$v_f^{\gamma} = -Q_f, \ a_f^{\gamma} = 0, \ v_f^Z = \frac{I_f^3 - 2s_W^2 Q_f}{2s_W c_W}, \ a_f^Z = \frac{I_f^3}{2s_W c_W}.$$

#### $q\bar{q}$ -annihilation Born: diagrams and cross sections



Figure 2: Feynman diagrams of  $q\bar{q}(\bar{q}q) \rightarrow \ell^- \ell^+$  process at Born level.

Partonic level:

$$d\sigma_0^{q\bar{q}} = \frac{2\pi\alpha^2}{s^2} \sum_{i,j=\gamma,Z} D_i D_j^* \sum_{\chi=+,-} \lambda_{q_\chi}^{i,j} \lambda_{\ell_\chi}^{i,j} (t^2 + \chi u^2) dt.$$
(5)

#### $\gamma\gamma\text{-}{\rm fusion}$ Born: diagrams and cross sections



Figure 3: Feynman diagrams of  $\gamma\gamma \rightarrow \ell^-\ell^+$  process at Born level.

Partonic level:

$$d\sigma_0^{\gamma\gamma} = \frac{2\pi\alpha^2}{s^2} \frac{t^2 + u^2}{tu} dt.$$
 (6)

Hadronic level ( $C = \cos \theta$ ):

$$\frac{d^{3}\sigma_{0}^{h}}{dMdyd\mathcal{C}} = 8\pi\alpha^{2}f_{\gamma}^{A}(x_{1})f_{\gamma}^{B}(x_{2})\frac{t^{2}+u^{2}}{SM^{5}(1-\mathcal{C}^{2})}\Theta.$$
 (7)

#### Inverse photon/gluon emission diagrams



Figure 4: Feynman diagrams of  $\gamma q(gq) \rightarrow \ell^- \ell^+ q$  process.

Partonic level:

$$d\sigma_{\gamma q} = \frac{1}{2^6 \pi^5 s} \sum_{a,b} \overline{\sum_{\text{pol}}} \mathcal{M}^a_{\gamma q} (\mathcal{M}^b_{\gamma q})^+ d\Phi_3.$$
(8)

Hadronic level:

$$d\sigma_{\gamma q}^{\text{ex}} = \sum_{q} \sum_{r_1, r_2} f_{\gamma}^{r_1, A}(x_1, Q^2) dx_1 f_q^{r_2, B}(x_2, Q^2) dx_2 \, d\sigma_{\gamma q}. \tag{9}$$

#### Some details for hadronic cross section

After using quark-parton model rules and some algebra:

$$d\sigma_{\gamma q}^{\text{ex}} = \frac{\alpha^3 J_x}{\pi^2 s} \sum_q Q_q^2 f_{\gamma}^{\mathcal{A}}(x_1) f_q^{\mathcal{B}}(x_2) \left[ V_{q\ell}(q_1) S_V^{\gamma q} + A_{q\ell}(q_1) S_A^{\gamma q} \right] d\Phi_3 \, dM dy,$$
(10)

where vector and axial combinations are factorized as following:

$$V_{q\ell}(q_1) = \sum_{a,b=\gamma,Z} \lambda_{qV}^{ab} \lambda_{\ell V}^{ab} D_a(q_1) D_b^*(q_1),$$
  

$$A_{q\ell}(q_1) = \sum_{a,b=\gamma,Z} \lambda_{qA}^{ab} \lambda_{\ell A}^{ab} D_a(q_1) D_b^*(q_1).$$
(11)

For Jacobian of transition to experimental variables we have:

$$dx_1 dx_2 = |J_x| dM dy, \quad J_x = \frac{2M(E_5 + \sqrt{E_5^2 + M^2})}{S\sqrt{E_5^2 + M^2}}.$$
 (12)



Figure 5: Configuration of final 3-vectors

 $\cos\theta_{35} = \cos\theta_3 \cos\theta_5 + \sin\theta_3 \sin\theta_5 \cos\varphi_5.$ 

$$\Xi_3 = \frac{1}{2(\mathcal{B}^2 - \mathcal{C}^2)} \Big( \mathcal{C}(\mathcal{A} - \mathcal{C}^2) + \mathcal{B}\sqrt{(\mathcal{A} - \mathcal{C}^2)^2 + 4m_3^2(\mathcal{B}^2 - \mathcal{C}^2)} \Big),$$

V.A. Zykunov

#### Quark mass singularity

To get physical cross section we should subtract Quark mass Singularity (QS) term

$$d\sigma_{\gamma q}^{\rm IGE} = d\sigma_{\gamma q}^{\rm ex} - d\sigma_{\gamma q}^{\rm QS}, \qquad (13)$$

where

$$d\sigma_{\gamma q}^{\rm QS} = \frac{\alpha}{2\pi} \sum_{q} Q_q^2 \log \frac{M^2}{m_q^2} \int_0^1 d\eta \, f_{\gamma}^{\mathcal{A}}(x_1) f_q^{\mathcal{B}}(x_2) \, P_{\gamma q}(\eta) \, J_\eta \, d\sigma_{\bar{q}q}^0(\eta) J_{\chi} \, d\mathcal{M} dy.$$

$$\tag{14}$$

To obtain this nontrivial QS-term we apply leading logarithmic approximation working at point

$$p_5 = (1 - \eta)p_1.$$
 (15)

As sequence in cross section (14) we get the jacobian and splittig function (Altarelli & Parisi, Nucl. Phys. B. - 1977):

$$J_{\eta} = \frac{2\eta(1+\eta)}{(1+\eta+(1-\eta)\cos\theta_3)^2}, \quad P_{\gamma q}(\eta) = (1-\eta)^2 + \eta^2.$$
(16)

It is time to show some numbers. Firstly, main features of EWK and QCD NLO RCs calculation are following:

- The notations, the Feynman rules are inspired by review of **M. Böhm**, **H. Spiesberger, and W. Hollik, 1986**,
- $\star$  the t'Hooft–Feynman gauge,
- $\star$  on-mass renormalization scheme ( $\alpha, \alpha_s, m_W, m_Z, m_H$  and the fermion masses as independent parameters),
- QCD result is obtained from QED one by substitution:

$$Q_q^2 \alpha \to \sum_{s=1}^{N^2 - 1} t^s t^s \alpha_s = \frac{N^2 - 1}{2N} I \alpha_s \to \frac{4}{3} \alpha_s, \tag{17}$$

here  $2t^a$  – Gell-Mann matrices, and N = 3,

•  $\star$  ultrarelativistic approximation where it is possible.

## Some modern codes for NLO and NNLO RCs for hadronic colliders (in the ABC order)

- 🛧 DYNNLO (S. Catani, L. Cieri, G. Ferrera et al.)
- 🛧 FEWZ (R. Gavin, Y. Li, F. Petriello, S. Quackenbush)
- 🛧 HORACE (C.Carloni Calame, G.Montagna, et al.)
- 🖈 MC@NLO (S. Frixione, F. Stoeckli, P. Torrielli et al.)
- 🖈 PHOTOS (N. Davidson, T. Przedzinski, Z. Was et al.)
- 🖈 POWHEG (L. Barze, G. Montagna, P. Nason et al.)
- 🖈 RADY (S. Dittmaier, A. Huss, C. Schwinn et al.)
- $\star$  READY (V. Zykunov, RDMS CMS)
- 🖈 MCSANC (Dubna: A. Andonov, A. Arbuzov, D. Bardin et al.)
- ★ WINHAC (W. Placzek, S. Jadach, M. W. Krasny et al.)
- 🖈 ZGRAD (U. Baur, W. Hollik, D. Wackeroth et al.)

In the following the scale of radiative effects to dilepton production will be discussed using FORTRAN program **READY**: (Radiative corrEctions to IArge invariant mass Drell-Yan process).

We used the following set of prescriptions:

- $\star$  standard PDG set of SM input electroweak parameters,
- $\star$  "effective" quark masses ( $\Delta \alpha^{(5)}_{had}(m_Z^2) = 0.0276$ ),
- $\star$  5 active flavors of quarks in proton,
- $\star$  CTEQ, CT10, and MHHT14 sets of PDFs,
- $\star$  choice for PDFs:  $Q = M_{sc} = M$ .

We impose the experimental restriction conditions

•  $\star$  on the detected lepton angle  $-\zeta^* \leq \cos \theta \leq \zeta^*$  (or on the rapidity  $|y(l)| \leq y(l)^*$ ); for CMS detector the cut values of  $\zeta^*$  (or  $y(l)^*$ ) are determined as

$$\zeta^* pprox 0.986614$$
 (or  $y(I)^* = 2.5),$ 

- $\star$  the second standard CMS restriction  $p_T(I) \ge 20$  GeV,
- ★ the "bare" setup for muon identification requirements (no smearing, no recombination of muon and photon/gluon).

Forward-backward asymmetry  $A_{\rm FB}$  is important observable in dilepton production with a dual nature – electroweak and kinematical:

$$A_{\rm FB} = \frac{\sigma_{\rm F}^h - \sigma_{\rm B}^h}{\sigma_{\rm F}^h + \sigma_{\rm B}^h},\tag{18}$$

where according J. Collins & D. Soper (1977):

- $\sigma_{\rm F}^{h}$  is "forward" cross section (cos  $\theta^* > 0$ ),
- $\sigma_{\rm B}^{h}$  is "backward" cross section (cos  $\theta^* < 0$ ).

In the Collins–Soper system  $\cos \theta^*$  looks like:

$$\cos\theta^* = \operatorname{sgn}[x_2(t+u_1) - x_1(t_1+u)] \frac{tt_1 - uu_1}{M\sqrt{s(u+t_1)(u_1+t)}}$$

#### Forward, Backward (and Experimental) borders

For the case of nonradiative kinematics the  $\cos \theta^*$  has especially simple view:

$$\cos \theta^* = \operatorname{sgn}[x_1 - x_2] \frac{u - t}{s} = \operatorname{sgn}[e^y - e^{-y}] \frac{(1 + \mathcal{C})e^{-y} - (1 - \mathcal{C})e^y}{(1 + \mathcal{C})e^{-y} + (1 - \mathcal{C})e^y}.$$

Solving  $\cos \theta^* = 0$  we get **two conditions** for border dividing the regions of  $\sigma_{\rm F}^h$  and  $\sigma_{\rm B}^h$ :

$$y = 0, \quad \mathcal{C} \equiv \cos \theta = \operatorname{th} y.$$

The CMS experimental condition  $|\cos \theta| < \zeta^*$  is trivial but the second one  $|\cos \alpha| < \zeta^*$  is rather sophisticated:

$$\cos\left(\arccos\frac{\cos\theta - \operatorname{th} y}{r} + \arcsin\frac{\sin\theta \operatorname{th} y}{r}\right) = \pm \xi^*,$$

where

$$r = \sqrt{1 - 2\cos\theta \,\mathrm{th}\,y + \mathrm{th}^2\,y}.$$

#### Forward, Backward (and Experimental) regions



Figure 6: Left – Forward, Backward and CMS regions in y and  $\cos\theta$  variables (**borders are**: y = 0,  $\cos\theta = \text{th } y$ ,  $\cos\theta = \pm \zeta^*$ , and  $\cos\alpha = \pm \zeta^*$ , where  $\zeta^* \approx 0.9866$ ),

right – the points sampled by Monte-Carlo generator of VEGAS **for Backward CMS region**.

#### Additive relative corrections to $A_{\rm FB}$

Let 0 denotes the Born DY contribution, and for adiitional effect we use c:

c = NLO EW DY, NLO QCD DY, NLO  $\gamma\gamma$ , IGE.

Corrected forward-backward asymmetry is defined as follows

$$\begin{aligned} \mathcal{A}_{\rm FB}^{c} &= \frac{\sigma_{\rm F}^{0} + \sum_{c} \sigma_{\rm F}^{c} - \sigma_{\rm B}^{0} - \sum_{c} \sigma_{\rm E}^{c}}{\sigma_{\rm F}^{0} + \sum_{c} \sigma_{\rm F}^{c} + \sigma_{\rm B}^{0} + \sum_{c} \sigma_{\rm E}^{c}} = \\ &= \frac{\sigma_{\rm F}^{0} - \sigma_{\rm B}^{0}}{\sigma_{\rm F}^{0} + \sigma_{\rm B}^{0}} \times \frac{1 + \sum_{c} \delta_{\rm F}^{c}}{1 + \sum_{c} \delta_{\rm F}^{c}} = \\ &= \mathcal{A}_{\rm FB}^{0} \times \frac{1 + \sum_{c} \delta_{\rm F}^{c}}{1 + \sum_{c} \delta_{\rm F}^{c}}, \end{aligned}$$

where

$$\delta^{\mathbf{c}}_{+} = \frac{\sigma^{\mathbf{c}}_{\mathrm{F}} + \sigma^{\mathbf{c}}_{\mathrm{B}}}{\sigma^{\mathbf{0}}_{\mathrm{F}} + \sigma^{\mathbf{0}}_{\mathrm{B}}}, \quad \delta^{\mathbf{c}}_{-} = \frac{\sigma^{\mathbf{c}}_{\mathrm{F}} - \sigma^{\mathbf{c}}_{\mathrm{B}}}{\sigma^{\mathbf{0}}_{\mathrm{F}} - \sigma^{\mathbf{0}}_{\mathrm{B}}}.$$

(19)

| n  | $M_1$ , TeV | $M_2$ , TeV | $\delta^{c}_{+}$         |                            |                     | $\delta_{-}^{c}$           |                          |                       |
|----|-------------|-------------|--------------------------|----------------------------|---------------------|----------------------------|--------------------------|-----------------------|
|    |             |             | $\delta^{\mathrm{ex}}_+$ | $\delta_{\pm}^{\text{LL}}$ | $\delta^{ m IGE}_+$ | $\delta_{-}^{\mathrm{ex}}$ | $\delta_{-}^{\text{LL}}$ | $\delta_{-}^{ m IGE}$ |
| -3 | 0.106       | 0.12        | 8.139                    | 8.070                      | -0.383              | 5.257                      | 5.128                    | -0.253                |
| -2 |             |             | 0.//1<br>5 303           | 0.094<br>5 322             | -0.370              | 4.375                      | 4.199                    | -0.248                |
| 0  |             |             | 4.019                    | 3.951                      | -0.376 $-0.364$     | 2.590                      | 2.426                    | -0.230<br>-0.248      |
| -3 | 0.51        | 0.60        | 4.185                    | 4.101                      | -0.244              | 3.710                      | 3.632                    | -0.255                |
| -2 |             |             | 3.544                    | 3.458                      | -0.243              | 3.130                      | 3.057                    | -0.259                |
| -1 |             |             | 2.902                    | 2.816                      | -0.242              | 2.560                      | 2.483                    | -0.254                |
| 0  |             |             | 2.259                    | 2.173                      | -0.240              | 1.984                      | 1.908                    | -0.254                |
| -3 | 1.0         | 1.2         | 2.812                    | 2.757                      | -0.206              | 2.829                      | 2.791                    | -0.236                |
| -2 |             |             | 2.392                    | 2.337                      | -0.207              | 2.399                      | 2.364                    | -0.240                |
| -1 |             |             | 1.972                    | 1.918                      | -0.206              | 1.969                      | 1.936                    | -0.243                |
| 0  |             |             | 1.553                    | 1.498                      | -0.205              | 1.545                      | 1.509                    | -0.240                |
| -3 | 3.0         | 6.5         | 1.240                    | 1.219                      | -0.144              | 1.505                      | 1.499                    | -0.184                |
| -2 |             |             | 1.059                    | 1.039                      | -0.144              | 1.284                      | 1.280                    | -0.185                |
| -1 |             |             | 0.880                    | 0.859                      | -0.144              | 1.064                      | 1.060                    | -0.186                |
| 0  |             |             | 0.699                    | 0.679                      | -0.144              | 0.843                      | 0.840                    | -0.186                |

 $m_q = 10^n m_u, \ n = (-3, -2, -1, 0), \ m_u = 0.06983 \text{ GeV}$ 

#### Additive relative corrections for Run3 of CMS LHC



Figure 7: Additive relative corrections (left – "plus", right – "minus") for Run3 of CMS LHC ( $\mu^+\mu^-$ -production, |y| < 2.5).

#### Net effect for $A_{\rm FB}$ (Run3 of CMS LHC)



Figure 8: Total relative corrections (left) and  $A_{\rm FB}$  (right) for Run3 of CMS LHC ( $\mu^+\mu^-$ -production, |y| < 2.5).

#### Conclusions & Acknowledgement

- $\star$  The Inverse Gluon Emission in dilepton production has been studied. It has been ascertained that the considered in Run 3 region IGE effect changes the cross sections and  $A_{\rm FB}$  significantly.
- **★** The net result (NLO EW DY + NLO QCD DY [+ IGE] + NLO  $\gamma\gamma$ -fusion) to  $A_{\rm FB}$  has been studied using additive relative corrections technics.
- ★ I would like to thank the **RDMS CMS group** members for the stimulating discussions and **CERN (CMS Group)** for warm hospitality during my visits.
- ★ This work was supported by the **Convergence-2025** Research Program of Republic of Belarus (Microscopic World and Universe Subprogram).
- $\star$  The numerical calcualtion was performed partically by "HybriLIT" of the Laboratory of Information Technologies of JINR.