Inverse gluon emission in dilepton production at CMS LHC

V. A. Zykunov (JINR, GSU)

ICPPA–2024 VII International Conference on Particle Physics and Astrophysics Moscow, 22–25 October, 2024

Introduction

Despite the fact that the Standard Model (SM) keeps the status of consistent and experimentally confirmed theory, the search of New Physics

- $\bullet \star$ the supersymmetry,
- $\bullet \star$ M-theory,
- $\bullet \star$ DM-particles,
- $\bullet \star$ axions.
- \star feebly interacting particles,
• \star extra spatial dimensions.
- extra spatial dimensions,
- $\bullet \star$ extra neutral gauge bosons, etc.

is continued.

One of powerful tool in the modern experiments at LHC is the investigation of dilepton production

$$
pp \to \ell^+ \ell^- X, \quad \ell = \mu, e \tag{1}
$$

at large invariant mass of lepton pair: $M \ge 1$ TeV.

The measured observable quantities:

- \star differential cross section $\frac{d\sigma}{dM}$,
- \star double-differential cross section $\frac{d^2\sigma}{dMdy}$,
- $\bullet \star$ forward-backward asymmetry A_{FB} are consistent with the SM predictions at

$$
\sqrt{5} = 7-8
$$
 TeV (19.7 fb⁻¹) for $M \le 2$ TeV,
 $\sqrt{5} = 13$ TeV (85 fb⁻¹) for $M \le 3$ TeV

 $(\sqrt{5}-\text{total energy in c.m.s. of hadrons},\,M-\text{dilepton }\,\ell^+\ell^-$ invariant mass, y – dilepton rapidity)

- $\bullet \star$ NNLO RCs are taken into account by using of FEWZ,
- $\bullet \star$ NNLO PDFs are CT10 NNLO and NNPDF2.1.

Four mechanisms of dilepton production

Figure 1: The Drell–Yan process, the photon-photon fusion, inverse gluon or γ emission with quark, inverse γ emission with muon.

Notations, invariants, coupling constants

The standard set of Mandelstam invariants for the partonic elastic scattering (with $p_1 + p_2 = p_3 + p_4$):

$$
s=(p_1+p_2)^2, t=(p_1-p_3)^2, u=(p_2-p_3)^2. (2)
$$

The propagator for j -boson depends on its mass m_j and width $\mathsf{\Gamma}_j$:

$$
D_j(q) = \frac{1}{q^2 - m_j^2 + im_j\Gamma_j}, \quad j = \gamma, Z. \tag{3}
$$

Suitable combinations of coupling constants are:

$$
\lambda_f{}^{i,j}_{+} = v_f^i v_f^j + a_f^i a_f^j, \quad \lambda_f{}^{i,j}_{-} = v_f^i a_f^j + a_f^i v_f^j,
$$
 (4)

$$
v_f^{\gamma} = -Q_f, \quad a_f^{\gamma} = 0, \quad v_f^Z = \frac{I_f^3 - 2s_W^2 Q_f}{2s_W c_W}, \quad a_f^Z = \frac{I_f^3}{2s_W c_W}.
$$

$q\bar{q}$ -annihilation Born: diagrams and cross sections

Figure 2: Feynman diagrams of $q\bar{q}(\bar{q}q) \rightarrow \ell^-\ell^+$ process at Born level.

Partonic level:

$$
d\sigma_0^{q\bar{q}} = \frac{2\pi\alpha^2}{s^2} \sum_{i,j=\gamma,Z} D_i D_j^* \sum_{\chi=+,-} \lambda_{q\chi}^{i,j} \lambda_{\ell\chi}^{i,j}(t^2 + \chi u^2) dt. \tag{5}
$$

$\gamma\gamma$ -fusion Born: diagrams and cross sections

Figure 3: Feynman diagrams of $\gamma\gamma\to \ell^-\ell^+$ process at Born level.

Partonic level:

$$
d\sigma_0^{\gamma\gamma} = \frac{2\pi\alpha^2}{s^2} \frac{t^2 + u^2}{tu} dt.
$$
 (6)

Hadronic level $(C = \cos \theta)$:

$$
\frac{d^3\sigma_0^h}{dMdydC} = 8\pi\alpha^2 f_\gamma^A(x_1) f_\gamma^B(x_2) \frac{t^2 + u^2}{SM^5(1 - C^2)} \Theta.
$$
 (7)

Inverse photon/gluon emission diagrams

Figure 4: Feynman diagrams of $\gamma q(gq) \rightarrow \ell^- \ell^+ q$ process.

Partonic level:

$$
d\sigma_{\gamma q} = \frac{1}{2^6 \pi^5 s} \sum_{a,b} \overline{\sum_{\text{pol}}} \mathcal{M}_{\gamma q}^a (\mathcal{M}_{\gamma q}^b)^+ d\Phi_3.
$$
 (8)

Hadronic level:

$$
d\sigma_{\gamma q}^{\text{ex}} = \sum_{q} \sum_{r_1, r_2} f_{\gamma}^{r_1, A}(x_1, Q^2) dx_1 f_{q}^{r_2, B}(x_2, Q^2) dx_2 d\sigma_{\gamma q}.
$$
 (9)

Some details for hadronic cross section

After using quark-parton model rules and some algebra:

$$
d\sigma_{\gamma q}^{\text{ex}} = \frac{\alpha^3 J_x}{\pi^2 \mathfrak{s}} \sum_{q} Q_q^2 f_{\gamma}^A(x_1) f_{q}^B(x_2) \left[V_{q\ell}(q_1) S_{V}^{\gamma q} + A_{q\ell}(q_1) S_{A}^{\gamma q} \right] d\Phi_3 dMdy,
$$
\n(10)

where vector and axial combinations are factorized as following:

$$
V_{q\ell}(q_1) = \sum_{a,b=\gamma,Z} \lambda_{qV}^{ab} \lambda_{\ell V}^{ab} D_a(q_1) D_b^*(q_1),
$$

\n
$$
A_{q\ell}(q_1) = \sum_{a,b=\gamma,Z} \lambda_{qA}^{ab} \lambda_{\ell A}^{ab} D_a(q_1) D_b^*(q_1).
$$
\n(11)

For Jacobian of transition to experimental variables we have:

$$
dx_1 dx_2 = |J_x| dM dy, \quad J_x = \frac{2M(E_5 + \sqrt{E_5^2 + M^2})}{S\sqrt{E_5^2 + M^2}}.
$$
 (12)

Figure 5: Configuration of final 3-vectors

 $\cos \theta_{35} = \cos \theta_3 \cos \theta_5 + \sin \theta_3 \sin \theta_5 \cos \varphi_5$.

$$
E_3 = \frac{1}{2(\mathcal{B}^2 - \mathcal{C}^2)} \Big(\mathcal{C}(\mathcal{A} - \mathcal{C}^2) + \mathcal{B}\sqrt{(\mathcal{A} - \mathcal{C}^2)^2 + 4m_3^2(\mathcal{B}^2 - \mathcal{C}^2)} \Big),
$$

Quark mass singularity

To get physical cross section we should subtract Quark mass Singularity (QS) term

$$
d\sigma_{\gamma q}^{\text{IGE}} = d\sigma_{\gamma q}^{\text{ex}} - d\sigma_{\gamma q}^{\text{QS}},\qquad(13)
$$

where

$$
d\sigma_{\gamma q}^{\text{QS}} = \frac{\alpha}{2\pi} \sum_{q} Q_q^2 \log \frac{M^2}{m_q^2} \int_0^1 d\eta \, f_\gamma^A(x_1) f_q^B(x_2) P_{\gamma q}(\eta) J_\eta \, d\sigma_{qq}^0(\eta) J_x \, dMdy. \tag{14}
$$

To obtain this nontrivial QS-term we apply leading logarithmic approximation working at point

$$
p_5 = (1 - \eta)p_1. \t\t(15)
$$

As sequence in cross section [\(14\)](#page-10-0) we get the jacobian and splittig function (Altarelli & Parisi, Nucl. Phys. B. – 1977):

$$
J_{\eta} = \frac{2\eta(1+\eta)}{(1+\eta+(1-\eta)\cos\theta_3)^2}, \quad P_{\gamma q}(\eta) = (1-\eta)^2 + \eta^2. \tag{16}
$$

It is time to show some numbers. Firstly, main features of EWK and QCD NLO RCs calculation are following:

- The notations, the Feynman rules are inspired by review of M. Böhm, H. Spiesberger, and W. Hollik, 1986,
- \star the t'Hooft–Feynman gauge,
- \star on-mass renormalization scheme $(\alpha, \alpha_s, m_W, m_Z, m_H$ and the fermion masses as independent parameters),
- QCD result is obtained from QED one by substitution:

$$
Q_q^2 \alpha \to \sum_{a=1}^{N^2-1} t^a t^a \alpha_s = \frac{N^2-1}{2N} I \alpha_s \to \frac{4}{3} \alpha_s, \qquad (17)
$$

here $2t^a$ – Gell-Mann matrices, and $N = 3$,

 $\bullet \star$ ultrarelativistic approximation where it is possible.

Some modern codes for NLO and NNLO RCs for hadronic colliders (in the ABC order)

- $\bullet \star$ DYNNLO (S. Catani, L. Cieri, G. Ferrera et al.)
- $\bullet \star$ FEWZ (R. Gavin, Y. Li, F. Petriello, S. Quackenbush)
- $\bullet \star$ HORACE (C.Carloni Calame, G.Montagna, et al.)
- $\bullet \star$ MC@NLO (S. Frixione, F. Stoeckli, P. Torrielli et al.)
- $\bullet \star$ PHOTOS (N. Davidson, T. Przedzinski, Z. Was et al.)
- $\bullet \star$ POWHEG (L. Barze, G. Montagna, P. Nason et al.)
- $\bullet \star$ RADY (S. Dittmaier, A. Huss, C. Schwinn et al.)
- $\bullet \star$ READY (V. Zykunov, RDMS CMS)
- $\bullet \star$ MCSANC (Dubna: A. Andonov, A. Arbuzov, D. Bardin et al.)
- $\bullet \star$ WINHAC (W. Placzek, S. Jadach, M.W. Krasny et al.)
- $\bullet \star$ ZGRAD (U. Baur, W. Hollik, D. Wackeroth et al.)

In the following the scale of radiative effects to dilepton production will be discussed using FORTRAN program **READY**: (Radiative corr**E**ctions to lArge invariant mass Drell–Yan process).

We used the following set of prescriptions:

- $\bullet \star$ standard PDG set of SM input electroweak parameters,
- \star "effective" quark masses $(\Delta \alpha^{(5)}_{had} (m_Z^2) = 0.0276)$,
- $\bullet \star$ 5 active flavors of quarks in proton,
- $\bullet \star$ CTEQ, CT10, and MHHT14 sets of PDFs,
- \star choice for PDFs: $Q = M_{\rm sc} = M$.

We impose the experimental restriction conditions

 \star on the detected lepton angle $-\zeta^* \leq \cos \theta \leq \zeta^*$ (or on the rapidity $|y(t)| \leq y(t)^{*}$); for CMS detector the cut values of ζ^{*} (or $y(t)^{*}$) are determined as

$$
\zeta^* \approx 0.986614
$$
 (or $y(I)^* = 2.5$),

- \bullet ★ the second standard CMS restriction $p_T(l) \geq 20$ GeV,
- $\bullet \star$ the "bare" setup for muon identification requirements (no smearing, no recombination of muon and photon/gluon).

Forward-backward asymmetry A_{FR} is important observable in dilepton production with a dual nature - electroweak and kinematical:

$$
A_{\rm FB} = \frac{\sigma_{\rm F}^h - \sigma_{\rm B}^h}{\sigma_{\rm F}^h + \sigma_{\rm B}^h},\tag{18}
$$

where according **J. Collins & D. Soper** (1977) :

- $\sigma_{\rm F}^h$ is "forward" cross section (cos $\theta^*>0$),
- $\sigma_{\rm B}^h$ is "backward" cross section (cos $\theta^* < 0$).

In the Collins–Soper system $\cos \theta^*$ looks like:

$$
\cos\theta^* = \mathrm{sgn}[x_2(t+u_1)-x_1(t_1+u)]\frac{tt_1-uu_1}{M\sqrt{s(u+t_1)(u_1+t)}}.
$$

Forward, Backward (and Experimental) borders

For the case of nonradiative kinematics the $\cos\theta^*$ has espe
ially simple view:

$$
\cos \theta^* = \text{sgn}[x_1 - x_2] \frac{u - t}{s} = \text{sgn}\big[e^y - e^{-y}\big] \frac{(1 + \mathcal{C})e^{-y} - (1 - \mathcal{C})e^y}{(1 + \mathcal{C})e^{-y} + (1 - \mathcal{C})e^y}.
$$

Solving $\cos \theta^* = 0$ we get <mark>two conditions</mark> for border dividing the regions of $\sigma_{\rm F}^h$ and $\sigma_{\rm B}^h$.

$$
y=0, \quad C \equiv \cos \theta = \text{th } y.
$$

The CMS experimental condition $|\cos \theta| < \zeta^*$ is trivial but the second one $|\cos\alpha|<\zeta^*$ is rather sophisticated:

$$
\cos\left(\arccos\frac{\cos\theta - \th y}{r} + \arcsin\frac{\sin\theta \th y}{r}\right) = \pm \xi^*,
$$

where

$$
r = \sqrt{1 - 2\cos\theta \, \text{th } y + \text{th}^2 \, y}.
$$

Forward, Backward (and Experimental) regions

Figure 6: Left – Forward, Backward and CMS regions in y and $\cos\theta$ variables (borders are: $y = 0$, $\cos \theta = \text{th } y$, $\cos \theta = \pm \zeta^*$, and $\cos \alpha = \pm \zeta^*$, where $\zeta^* \approx$ 0.9866),

right - the points sampled by Monte-Carlo generator of VEGAS for Backward CMS region.

Additive relative corrections to A_{FB}

Let 0 denotes the Born DY contribution, and for adiitional effect we use c:

 $c = NLO EW DY, NLO QCD DY, NLO \gamma \gamma, IGE.$

Corrected forward-backward asymmetry is defined as follows

$$
A_{\text{FB}}^c = \frac{\sigma_{\text{F}}^0 + \sum_c \sigma_{\text{F}}^c - \sigma_{\text{B}}^0 - \sum_c \sigma_{\text{B}}^c}{\sigma_{\text{F}}^0 + \sum_c \sigma_{\text{F}}^c + \sigma_{\text{B}}^0 + \sum_c \sigma_{\text{B}}^c}
$$

=
$$
\frac{\sigma_{\text{P}}^0 - \sigma_{\text{B}}^0}{\sigma_{\text{F}}^0 + \sigma_{\text{B}}^0} \times \frac{1 + \sum_c \delta_c^c}{1 + \sum_c \delta_+^c}
$$

=
$$
A_{\text{FB}}^0 \times \frac{1 + \sum_c \delta_c^c}{1 + \sum_c \delta_+^c},
$$

where

$$
\delta^c_+ = \frac{\sigma^c_{\rm F} + \sigma^c_{\rm B}}{\sigma^0_{\rm F} + \sigma^0_{\rm B}}, \quad \delta^c_- = \frac{\sigma^c_{\rm F} - \sigma^c_{\rm B}}{\sigma^0_{\rm F} - \sigma^0_{\rm B}}.
$$

 (19)

 $m_q = 10^n m_u$, $n = (-3, -2, -1, 0)$, $m_u = 0.06983$ GeV

Additive relative corrections for Run3 of CMS LHC

Figure 7: Additive relative corrections (left - "plus", right - "minus") for Run3 of CMS LHC $(\mu^+\mu^-$ -production, $|y| < 2.5$).

Net effect for A_{FB} (Run3 of CMS LHC)

Figure 8: Total relative corrections (left) and A_{FB} (right) for Run3 of CMS LHC $(\mu^+ \mu^-$ -production, $|y| < 2.5$).

Conclusions & Acknowledgement

- $\bullet \star$ The Inverse Gluon Emission in dilepton production has been studied. It has been ascertained that the considered in Run 3 region IGE effect changes the cross sections and $A_{\rm FB}$ significantly.
- \star The net result (NLO EW DY + NLO QCD DY [+ IGE] + NLO $\gamma\gamma$ fusion) to A_{FR} has been studied using additive relative corrections technics.
- $\bullet \star$ I would like to thank the RDMS CMS group members for the stimulating discussions and CERN (CMS Group) for warm hospitality during my visits.
- $\bullet \star$ This work was supported by the Convergence-2025 Research Program of Republic of Belarus (Microscopic World and Universe Subprogram).
- $\bullet \star$ The numerical calcualtion was performed partically by "HybriLIT" of the Laboratory of Information Technologies of JINR.