National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

ATROPOS

An Improved String Hadronization Model

Nikolaenko R. V.

rvnikolaenko@mephi.ru

The 7th International Conference on Particle Physics and Astrophysics (ICPPA-2024)

Introduction. String models of hadronization

- **Preconfinement** approach: partons after production stay bound together as colorless systems
- It is believed that QCD field between partons compresses into a flux **tube** due to gluons self-interaction
- To simplify the theoretical description we neglect the transverse size of the tube **strings**
- Strings fragment via **pair production** and light strings are identified as **hadrons**

Field lines between a quark and an antiquark squeeze into a tube

Meson production: $q - \bar{q}$ pair Baryon production: $qq - \overline{qq}$ pair

Challenges of modern string models

ATROPOS-v1.0: proof of concept

- ➢ Can we use a **detailed** Monte-Carlo simulation of relativistic string fragmentation to produce hadrons?
- PYTHIA: use LUND fragmentation model
	- Only the simplest case of the string is derived from the initial postulates
	- Fragmentation apparatus (de-facto) not applicable for any non-symmetric picture: non-zero quark masses, initial extension of the string, multi-gluon string, non-zero angular momentum … $x_{\mu}(\tau,\sigma)$

- Define the string **properly:** conserve energy, momentum and angular momentum + more …
- Use the exact analytical solutions to calculate invariant area and string characteristics at the break point

Relativistic string with masses at its ends

Regular Nambu-Goto action

$$
S_{\text{string}} = -\kappa \int_{\tau_1}^{\tau_2} d\tau \int_{\sigma_1(\tau)}^{\sigma_2(\tau)} d\sigma \sqrt{(\dot{x}x')^2 - \dot{x}^2 x'^2} - \sum_{i=1}^2 m_i \int_{\tau_1}^{\tau_2} d\tau \sqrt{\left(\frac{dx_\mu(\tau, \sigma_i(\tau))}{d\tau}\right)^2}
$$

From the action follow the equations of motion

$$
\ddot{x}^\mu - {x'}^{\prime\prime\mu} = 0
$$

and boundary conditions

$$
\frac{m_1}{\kappa} \frac{d}{d\tau} \left(\frac{\dot{x}_\mu}{\sqrt{\dot{x}^2}} \right) = x'_\mu, \qquad \sigma = 0, \qquad \frac{\ddot{x}_\mu(\tau, 0) = q_1 x'_\mu(\tau, 0),}{\ddot{x}_\mu(\tau, \pi) = -q_2 x'_\mu(\tau, \pi),}
$$
\n
$$
\frac{m_2}{\kappa} \frac{d}{d\tau} \left(\frac{\dot{x}_\mu}{\sqrt{\dot{x}^2}} \right) = -x'_\mu, \qquad \sigma = \pi.
$$
\n
$$
\sigma = \pi.
$$
\n
$$
q_1 = \frac{\kappa}{m_1^2}, \qquad q_2 = \frac{\kappa}{m_2^2}
$$

Term to describe heavy quarks at string ends

4

To linearize the initial conditions the following condition is used (it restricts the type of string motion):

$$
\dot{x}^2(\tau,0) = m_1^{-2}, \qquad \dot{x}^2(\tau,\pi) = m_2^{-2}
$$

The solution to the Cauchy problem on the string movement can be written as the Fourier series:

$$
x^{\mu}(\tau,\sigma) = C_0^{\mu}\tau + D_0^{\mu} + \sum_{n=1}^{+\infty} \left[C_n^{\mu} \sin(\omega_n \tau) + D_n^{\mu} \cos(\omega_n \tau) \right] u_n(\sigma)
$$

First results… Particles yields

- Yield of η -mesons is well described (not specifically tuned though)
- The yield of light vector mesons and Σ -, Ω -hyperons is described (somewhat) better then in PYTHIA
- Good agreement on the multiplicity of c- and b-particles
- Few problems: to many Ξhyperons and some vector resonances (to be improved \circledcirc)

First results… Momentum spectra

- π^{\pm} -mesons and K^{\pm} -mesons spectra are well reproduced
- The spectrum of ρ^0 -mesons is in good agreement with data
- Proton spectrum too high at large momenta: need further tuning
- Note: **No special parameters used** to tune vector/charm/bottom/baryon production

Multiplicity of charged particles

- Good description overall, however:
	- 1. Much of the available LEP data was corrected with old PYTHIA simulations to fill the experimental gaps
	- 2. Raw data description can be achieved with different tunes (selection criteria leave much space for ambiguous model description)
	- 3. The behavior at wide energy range was not yet tested
	- 4. No p-p collisions were simulated, as this version of the model is itself not complete (and thus would likely fail at p-p interactions)
- Remains the problem of proper string definition, so …

ATROPOS-v1.1: towards the proper and reliable string definition

So where does the problem stand?

If we consider the usual string action

$$
S_{\text{string}} = -\kappa \int_{\sigma_1}^{\sigma_2} d\sigma \int_{\tau_1(\sigma)}^{\tau_2(\sigma)} d\tau \sqrt{(x'\dot{x})^2 - x'^2 \dot{x}^2}
$$

 $x_{\mu}(\tau, \sigma)$ is a 2-parameter definition of the string world sheet in time and space

$$
\dot{x}_{\mu} \equiv \frac{\partial x_{\mu}(\tau, \sigma)}{\partial \tau}
$$

$$
x'_{\mu} \equiv \frac{\partial x_{\mu}(\tau, \sigma)}{\partial \sigma}
$$

the equations of motion will actually take the form

$$
\frac{\partial}{\partial \tau} \left(\frac{(\dot{x}x')x_{\mu}^{\prime} - {x'}^2 \dot{x}_{\mu}}{\sqrt{(\dot{x}x')^2 - \dot{x}^2 {x'}^2}} \right) + \frac{\partial}{\partial \sigma} \left(\frac{(\dot{x}x')\dot{x}_{\mu} - \dot{x}^2 x_{\mu}^{\prime}}{\sqrt{(\dot{x}x')^2 - \dot{x}^2 {x'}^2}} \right) = 0.
$$

Does not look promising, right? Likely, the Nambu-Goto action is reparameterization-invariant, so a specific relation between τ and σ can be chosen:

$$
\dot{x}^2 + {x'}^2 = 0, \ \dot{x}x' = 0.
$$

This is called orthonormal gauge. Only with that we get the simple wave equation to describe string movement:

$$
\ddot{x}_{\mu}-x_{\mu}^{\prime\prime}=0.
$$

Virasoro conditions for the initial data

Lets substitute the solution to the free string Cauchy problem into the orthonormal gauge:

$$
x_{\mu}(\tau,\sigma) = Q_{\mu} + P_{\mu} \frac{\tau}{\pi \kappa} + \frac{i}{\sqrt{\pi \kappa}} \sum_{\substack{n=-\infty \\ n \neq 0}}^{+\infty} e^{-in\tau} \frac{\alpha_{n\mu}}{n} \cos(n\sigma) \qquad \begin{cases} \dot{x}^2 + {x'}^2 = 0\\ \dot{x}x' = 0. \end{cases}
$$

• Here Q_{μ} are the coordinates of the string center-of-mass in the initial moment of time, P_{μ} is a 4-vector of total string momentum

What we get are the Virasoro conditions:

$$
\sum_{m=-\infty}^{+\infty} \alpha_{n-m} \alpha_m = 0, \qquad n = 0, \pm 1, \pm 2, \ldots
$$

Here $\alpha_{n\mu}$ are the Fourier amplitudes:

$$
\alpha_{n\mu} = \sqrt{\frac{\kappa}{\pi}} \int_0^{\pi} d\sigma \cos(n\sigma) \left(\nu_{\mu}(\sigma) - in \rho_{\mu}(\sigma) \right), \qquad n \neq 0,
$$

$$
\alpha_{0\mu} = \frac{P_{\mu}}{\sqrt{\kappa \pi}}.
$$

9 Functions $v_\mu(\sigma)$ and $\rho_\mu(\sigma)$ define the velocity and form of the string in the initial moment of time. So, Virasoro conditions restrict the way this functions may be defined.

The FOEE-method to define the initial conditions of the string

Existing models like EPOS, NEXUS, Caltech-II all use the same ansatz for initial conditions:

$$
\rho_{\mu} \equiv 0,
$$

$$
\nu_{\mu} = const = \frac{E}{p}.
$$

One can check, though, that when substituted into Virasoro conditions, these functions yield the condition: $M^2 = 0!$

- To find the functions that can satisfy the Virsosro conditions and would not require the string to be massless turns out to be quit a challenge…
- In addition, angular momentum conservation adds 6 more equations to satisfy!
- A new approach was suggested:
	- ➢ Define the initial data in the form of **Final-Order Eigenfunction Expansion (FOEE)**

$$
v_{\mu}(\sigma) = a_{0\mu} + \sum_{k \neq 0} a_{k\mu} \cos(k\sigma)
$$

$$
\rho_{\mu}(\sigma) = b_{0\mu} + \sum_{k \neq 0} b_{k\mu} \cos(k\sigma)
$$

The FOEE-method to define the initial conditions of the string

- It turns out, the minimal order for the FOEE system to have enough variables is 2
- So, we define initial data in the form

This eventually yields the

$$
v_{\mu}(\sigma) = a_{\mu} + b_{\mu} \cos(\sigma) + c_{\mu} \cos(2\sigma),
$$

\n
$$
\rho_{\mu}(\sigma) = d_{\mu} + e_{\mu} \cos(\sigma) + f_{\mu} \cos(2\sigma).
$$

 $b^2 + c^2 + e^2 + 4f^2 +$ P^2 $\frac{1}{2(\kappa \pi)^2} = 0$ $bc + 2ef +$ bP $\kappa\pi$ $= 0$ $2bf - ce +$ eP $\kappa\pi$ $= 0$ $b^2 - e^2 +$ $2cP$ $\kappa\pi$ $= 0$ + $2fP$ $\kappa\pi$ $= 0$ $bc - 2ef = 0$ $ce + 2bf = 0$ $c^2 - 4f^2 = 0$ $cf = 0$ $d_{\mu}P_{\nu}-d_{\nu}P_{\mu}+$ $\kappa\pi$ $\frac{dE}{2}(e_{\mu}b_{\nu}-e_{\nu}b_{\mu}+f_{\mu}c_{\nu}-f_{\nu}c_{\mu})=M_{\mu\nu}.$ following system of equation: Angular momentum conservation Virasoro conditions

20 variables, 15 equations \triangleright Additional assumptions to be made

No analytical solution is known:

- Use numerical methods instead
- However, the complexity of the system does not allow usual methods to succeed
- \triangleright Need for better method (or more brute force computation power)

The first solutions?

"Solution" 1 (accuracy 10^{-5}): String with $P_{\mu} = \{P_0, P_x, P_y, P_z\} = \{10, 1, 2, 3\}$ GeV, no rotation

 $a_{\mu} =$ 15.92 1.59 3.18 4.77 , $b_{\mu} =$ −0.63 −9.48 1.6 $\boldsymbol{0}$, $c_{\mu} =$ 1.95 -0.2 −1.94 0 , $d_{\mu} =$ 0 0 0 0 , $e_{\mu} =$ 0.27 4.06 −0.69 $\boldsymbol{0}$, $f_{\mu} =$ −1.02 0.1 1.02 0

"Solution" 2 (accuracy 10^{-7}):

$$
a_{\mu} = \begin{pmatrix} 15.92 \\ 1.59 \\ 3.18 \\ 4.77 \end{pmatrix}, \quad b_{\mu} = \begin{pmatrix} -0.07 \\ -3.08 \\ 1.91 \\ 0 \end{pmatrix}, \quad c_{\mu} = \begin{pmatrix} -3.34 \\ -1.7 \\ -2.88 \\ 0 \end{pmatrix}, \quad d_{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_{\mu} = \begin{pmatrix} -0.2 \\ 8.32 \\ -5.16 \\ 0 \end{pmatrix}, \quad f_{\mu} = \begin{pmatrix} -1.43 \\ -0.73 \\ -1.23 \\ 0 \end{pmatrix}
$$

"Solution" 3 (accuracy 10^{-12}):

$$
a_{\mu} = \begin{pmatrix} 15.92 \\ 1.59 \\ 3.18 \\ 4.77 \end{pmatrix}, \quad b_{\mu} = \begin{pmatrix} 1.34 \\ 6.04 \\ 3.67 \\ 0 \end{pmatrix}, \quad c_{\mu} = \begin{pmatrix} -0.47 \\ 0.16 \\ -0.44 \\ 0 \end{pmatrix}, \quad d_{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_{\mu} = \begin{pmatrix} 1.5 \\ 6.78 \\ 4.13 \\ 0 \end{pmatrix}, \quad f_{\mu} = \begin{pmatrix} 2.01 \\ -0.7 \\ 1.88 \\ 0 \end{pmatrix}
$$

No solutions for rotating strings found yet... **in the U** urgent need for search algorithms optimization!

Zero, as the string has no rotation

Note:

Even the simplest case of the massive relativistic string requires non-zero extension coefficients!

Conclusion

- ATROPOS is a state-of-the-art string hadronization model that allows the full-scale detailed Monte-Carlo simulation of the string fragmentation process and hadron production.
- ATROPOS is **the first** model to introduce an approach to conserve angular momentum of the system during hadron production
- The use of modified Nambu-Goto action makes possible to treat the heavy c-, b-hadron production using the same technique, as for the light quarks
- The promising first results encourage to further improve such approach and continue the development of the model
- The consideration of the restrictions imposed by Virasoro conditions is done for the first time for the string hadronization model
- It is shown, that a very non-trivial ways need to be taken to **properly** define the non-massless relativistic string
- **Much more improvements and results are upcoming!**

Thank you for your attention!

String models of hadronization

String fragmentation functions:

$$
f(z) \propto \frac{(1-z)^a}{z} e^{-\frac{bm^2}{z}}
$$

- Quark masses violate initial postulates of the model
- Scaling-invariant
- Bowler modification for heavy quarks

LUND Caltech-II (Area Decay Law)

$$
S_{\text{string}} = -\kappa \int_{\sigma_1}^{\sigma_2} d\sigma \int_{\tau_1(\sigma)}^{\tau_2(\sigma)} d\tau \sqrt{(\dot{x}x')^2 - \dot{x}^2 {x'}^2}
$$

Area law:

$$
\frac{dP_{\text{break}}}{dA} = P_0 = \text{const}
$$

- Approximation: initially point-like strings
- The simplest ansatz for initial conditions
- Non-physical segments on the strings to describe heavy quarks

Observed discrepancies with experimental data :

- π^0 cross-sections (especially for SoftQCD minimum-bias generators)
- Production of ρ^0 mesons in forward direction in hadron-nucleus interactions (important for extensive air showers)
- The Muon Puzzle: ratio $R = \frac{E_{\pi^0}}{E_{\pi^0}}$ $E_{\rm hadr}$
	- \triangleright Strange particles production
	- ➢ Resonance enhancement
	- ➢ Baryon enhancement

Both collective and non-collective effects matter! T. Pierog, K. Werner, DOI: 10.22323/1.444.02300

• No angular momentum conservation!

Fragmentation algorithm

Conservation of 4-momentum at string-to-hadron transition: «hadron-string shoving» mechanism

Free parameters of the model. FPS-50

Restrictions on hadron production

- The total angular momentum of the string must be conserved after the transition of its fragment into hadron
- System's total angular momentum is defined by the spin of the remaining fragment \vec{f}_{frag} , the spin of the hadron $\vec{S}_{\rm hadr}$ and the orbital angular momentum of their relative movement \vec{L}
- As we don't know, how exactly the transition happens, let us define the rule, that angular momentum can be conserved, if the maximum value of \vec{J}_{frag} + \vec{S}_{hadr} + \vec{L} is larger than initial string spin \vec{J} :

$$
J_{\text{frag}} + S_{\text{hadr}} + L \ge J
$$

• We can now calculate the area in τ , σ – space where this rule is fulfilled for different break points

Note, that even in electron-positron interactions there is a significant fraction of strings with high angular momentum due to the transverse gluons. The fraction of restricted string-to-hadron transitions according to angular momentum conservation (when $\Delta J > 0$) is around 6%. This is, however, the most simple and least strict way to impose such law.

Multiplicity of charged particles (free strings approximation)

- There are difficulties with the tail of the distributions most likely due to an incorrect description of strings with heavy c- and b-quarks
- Small multiplicities deviation (probably) as the result of correction of experimental data using JETSET
- Preliminary result!
- The description of the fragmentation of systems with heavy quarks is introduced for the first time from the first principles of the theory (starting from the action of the string)
- Additional parameterizations may be necessary

Problems with hadronization

- Hadronization is a process of final state hadron production from quarks and gluons (partons)
- Common mistake is to believe that there is a complete and consistent way of hadronization description

Cross-sections for π^0 production at LHC energies

The muon puzzle

Reduced parameter Δz is obtained by subtracting from calculated z the z_{mass} , which is based mainly on X_{max} measurements, Global Spline Fit. Significant non-zero slope!

Around 30% - 60% more muons than expected according to models at high energies

Initially-extended strings

Dense region (core) -> rapid collective expansion

The question of the importance of consideration of initial extension of the quark-gluon strings arises.

What properties of hadron production this might change?

Gauge and initial conditions (for ATROPOS-v1.0)

• How to define initial conditions for a string made out of produced partons?

Initial momentum of the string (per unit σ) $\vec{p}(\sigma)$ is constructed from partons momentums as piecewise-linear functions:

=1 for quarks and 0.5 for gluons as they loose energy for two pieces of string

$$
\tilde{p}_{i}^{\mu}(\sigma) = \frac{2(N-1)}{\pi} \left(\frac{p_{i+1}^{\mu} \xi_{i+1} - p_{i}^{\mu} \xi_{i}}{\sigma_{i+1} - \sigma_{i}} (\sigma - \sigma_{i}) + p_{i}^{\mu} \xi_{i} \right), \qquad \sigma \in [\sigma_{i}, \sigma_{i+1}];
$$
\n
$$
p_{i+1}^{\mu} = p_{parton,i}^{\mu} + p_{QCD,i}^{\mu}
$$
\nBut for energy the initial extension also must be taken into account:\n
$$
p_{i+1}^{\mu} = p_{parton,i}^{\mu} + p_{QCD,i}^{\mu}
$$
\n
$$
= \text{Energy stored in QCD field}
$$
\n
$$
= \text{This gauge leads to quadratic relation between time } t \text{ and}
$$
\n
$$
= \begin{bmatrix}\n\text{Mean in the real case} \\
\text{Mean in the
$$

σ