National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

ATROPOS

An Improved String Hadronization Model

Nikolaenko R. V.

rvnikolaenko@mephi.ru

The 7th International Conference on Particle Physics and Astrophysics (ICPPA-2024)

Introduction. String models of hadronization

- Preconfinement approach: partons after production stay bound together as colorless systems
- It is believed that QCD field between partons compresses into a flux tube due to gluons self-interaction
- To simplify the theoretical description we neglect the transverse size of the tube strings
- Strings fragment via pair production and light strings are identified as hadrons

Field lines between a quark and an antiquark squeeze into a tube

	 	Ð
	 	9

Meson production: $q - \overline{q}$ pair Baryon production: $qq - \overline{qq}$ pair

Challenges of modern string models

... and many more!

ATROPOS-v1.0: proof of concept

- > Can we use a **detailed** Monte-Carlo simulation of relativistic string fragmentation to produce hadrons?
- PYTHIA: use LUND fragmentation model
 - Only the simplest case of the string is derived from the initial postulates
 - Fragmentation apparatus (de-facto) not applicable for any non-symmetric picture: non-zero quark masses, initial extension of the string, multi-gluon string, non-zero angular momentum ... $x_{\mu}(\tau, \sigma)$

- Define the string **properly:** conserve energy, momentum and angular momentum + more ...
- Use the exact analytical solutions to calculate invariant area and string characteristics at the break point

Relativistic string with masses at its ends

Regular Nambu-Goto action

$$S_{\text{string}} = -\kappa \int_{\tau_1}^{\tau_2} d\tau \int_{\sigma_1(\tau)}^{\sigma_2(\tau)} d\sigma \sqrt{(\dot{x}x')^2 - \dot{x}^2 {x'}^2} - \sum_{i=1}^2 m_i \int_{\tau_1}^{\tau_2} d\tau \sqrt{\left(\frac{dx_\mu(\tau, \sigma_i(\tau))}{d\tau}\right)^2}$$

From the action follow the equations of motion

$$\ddot{x}^{\mu} - {x^{\prime\prime}}^{\mu} = 0$$

and boundary conditions

Term to describe heavy quarks at string ends

Δ

To linearize the initial conditions the following condition is used (it restricts the type of string motion):

$$\dot{x}^2(\tau,0) = m_1^{-2}, \qquad \dot{x}^2(\tau,\pi) = m_2^{-2}$$

The solution to the Cauchy problem on the string movement can be written as the Fourier series:

$$x^{\mu}(\tau,\sigma) = C_0^{\mu}\tau + D_0^{\mu} + \sum_{n=1}^{+\infty} \left[C_n^{\mu} \sin(\omega_n \tau) + D_n^{\mu} \cos(\omega_n \tau) \right] u_n(\sigma)$$

First results... Particles yields

- Yield of η-mesons is well
 described (not specifically tuned though)
- The yield of light vector mesons and Σ-, Ω-hyperons is described (somewhat) better then in PYTHIA
- Good agreement on the multiplicity of c- and b-particles
- Few problems: to many Ξhyperons and some vector resonances (to be improved ☺)

First results... Momentum spectra

- π^{\pm} -mesons and K^{\pm} -mesons spectra are well reproduced
- The spectrum of ρ^0 -mesons is in good agreement with data
- Proton spectrum too high at large momenta: need further tuning
- Note: **No special parameters used** to tune vector/charm/bottom/baryon production

Multiplicity of charged particles

- Good description overall, however:
 - Much of the available LEP data was corrected with old PYTHIA simulations to fill the experimental gaps
 - 2. Raw data description can be achieved with different tunes (selection criteria leave much space for ambiguous model description)
 - The behavior at wide energy range was not yet tested
 - No p-p collisions were simulated, as this version of the model is itself not complete (and thus would likely fail at p-p interactions)
- Remains the problem of proper string definition, so ...

ATROPOS-v1.1: towards the proper and reliable string definition

So where does the problem stand?

If we consider the usual string action

$$S_{\text{string}} = -\kappa \int_{\sigma_1}^{\sigma_2} d\sigma \int_{\tau_1(\sigma)}^{\tau_2(\sigma)} d\tau \sqrt{(x'\dot{x})^2 - x'^2 \dot{x}^2}$$

 $x_{\mu}(\tau, \sigma)$ is a 2-parameter definition of the string world sheet in time and space

$$\dot{x}_{\mu} \equiv \frac{\partial x_{\mu}(\tau, \sigma)}{\partial \tau}$$
$$x'_{\mu} \equiv \frac{\partial x_{\mu}(\tau, \sigma)}{\partial \sigma}$$

the equations of motion will actually take the form

$$\frac{\partial}{\partial \tau} \left(\frac{(\dot{x}x')x'_{\mu} - {x'}^{2}\dot{x}_{\mu}}{\sqrt{(\dot{x}x')^{2} - \dot{x}^{2}{x'}^{2}}} \right) + \frac{\partial}{\partial \sigma} \left(\frac{(\dot{x}x')\dot{x}_{\mu} - \dot{x}^{2}x'_{\mu}}{\sqrt{(\dot{x}x')^{2} - \dot{x}^{2}{x'}^{2}}} \right) = 0.$$

Does not look promising, right? Likely, the Nambu-Goto action is reparameterization-invariant, so a specific relation between τ and σ can be chosen:

$$\dot{x}^2 + {x'}^2 = 0, \ \dot{x}x' = 0.$$

This is called orthonormal gauge. Only with that we get the simple wave equation to describe string movement:

$$\ddot{x}_{\mu} - x_{\mu}^{\prime\prime} = 0$$

Virasoro conditions for the initial data

Lets substitute the solution to the free string Cauchy problem into the orthonormal gauge:

$$x_{\mu}(\tau,\sigma) = Q_{\mu} + P_{\mu}\frac{\tau}{\pi\kappa} + \frac{i}{\sqrt{\pi\kappa}}\sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} e^{-in\tau}\frac{\alpha_{n\mu}}{n}\cos(n\sigma) \qquad \begin{cases} \dot{x}^2 + {x'}^2 = 0\\ \dot{x}x' = 0. \end{cases}$$

• Here Q_{μ} are the coordinates of the string center-of-mass in the initial moment of time, P_{μ} is a 4-vector of total string momentum

What we get are the Virasoro conditions:

$$\sum_{m=-\infty}^{+\infty} \alpha_{n-m} \alpha_m = 0, \qquad n = 0, \pm 1, \pm 2, \dots$$

Here $\alpha_{n\mu}$ are the Fourier amplitudes:

$$\alpha_{n\mu} = \sqrt{\frac{\kappa}{\pi}} \int_0^{\pi} d\sigma \cos(n\sigma) \left(\frac{\nu_{\mu}(\sigma) - in\rho_{\mu}(\sigma)}{\alpha_{0\mu}} \right), \qquad n \neq 0,$$
$$\alpha_{0\mu} = \frac{P_{\mu}}{\sqrt{\kappa\pi}}.$$

Functions $v_{\mu}(\sigma)$ and $\rho_{\mu}(\sigma)$ define the velocity and form of the string in the initial moment of time. So, Virasoro conditions restrict the way this functions may be defined.

The FOEE-method to define the initial conditions of the string

Existing models like EPOS, NEXUS, Caltech-II all use the same ansatz for initial conditions:

$$ho_{\mu} \equiv 0,$$

 $v_{\mu} = const = rac{E}{p}.$

One can check, though, that when substituted into Virasoro conditions, these functions yield the condition: $M^2 = 0!$

- To find the functions that can satisfy the Virsosro conditions and would not require the string to be massless turns out to be quit a challenge...
- In addition, angular momentum conservation adds 6 more equations to satisfy!
- A new approach was suggested:
 - > Define the initial data in the form of Final-Order Eigenfunction Expansion (FOEE)

$$v_{\mu}(\sigma) = a_{0\mu} + \sum_{k \neq 0} a_{k\mu} \cos(k\sigma)$$
$$\rho_{\mu}(\sigma) = b_{0\mu} + \sum_{k \neq 0} b_{k\mu} \cos(k\sigma)$$

The FOEE-method to define the initial conditions of the string

- It turns out, the minimal order for the FOEE system to have enough variables is 2
- So, we define initial data in the form

This eventually yields the

$$\begin{aligned} v_{\mu}(\sigma) &= a_{\mu} + b_{\mu}\cos(\sigma) + c_{\mu}\cos(2\sigma), \\ \rho_{\mu}(\sigma) &= d_{\mu} + e_{\mu}\cos(\sigma) + f_{\mu}\cos(2\sigma). \end{aligned}$$

following system of equation: $b^{2} + c^{2} + e^{2} + 4f^{2} + \frac{P^{2}}{2(\kappa\pi)^{2}} = 0$ $bc + 2ef + \frac{bP}{\kappa\pi} = 0$ $2bf - ce + \frac{eP}{\kappa\pi} = 0$ $b^2 - e^2 + \frac{2cP}{\kappa\pi} = 0$ Virasoro conditions $be + \frac{2fP}{\kappa\pi} = 0$ bc - 2ef = 0ce + 2bf = 0 $c^2 - 4f^2 = 0$ cf = 0 $\implies \left[d_{\mu}P_{\nu} - d_{\nu}P_{\mu} + \frac{\kappa\pi}{2} \left(e_{\mu}b_{\nu} - e_{\nu}b_{\mu} + f_{\mu}c_{\nu} - f_{\nu}c_{\mu} \right) = M_{\mu\nu}. \right]$ Angular momentum conservation

20 variables, 15 equations➢ Additional assumptions to be made

No analytical solution is known:

- Use numerical methods instead
- However, the complexity of the system does not allow usual methods to succeed
- Need for better method (or more brute force computation power)

11

The first solutions?

String with $P_{\mu} = \{P_0, P_x, P_y, P_z\} = \{10, 1, 2, 3\}$ GeV, no rotation "Solution" 1 (accuracy 10^{-5}):

 $a_{\mu} = \begin{pmatrix} 15.92 \\ 1.59 \\ 3.18 \\ 4.77 \end{pmatrix}, \quad b_{\mu} = \begin{pmatrix} -0.63 \\ -9.48 \\ 1.6 \\ 0 \end{pmatrix}, \quad c_{\mu} = \begin{pmatrix} 1.95 \\ -0.2 \\ -1.94 \\ 0 \end{pmatrix}, \quad d_{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_{\mu} = \begin{pmatrix} 0.27 \\ 4.06 \\ -0.69 \\ 0 \end{pmatrix}, \quad f_{\mu} = \begin{pmatrix} -1.02 \\ 0.1 \\ 1.02 \\ 0 \end{pmatrix}$

"Solution" 2 (accuracy 10^{-7}):

$$a_{\mu} = \begin{pmatrix} 15.92 \\ 1.59 \\ 3.18 \\ 4.77 \end{pmatrix}, \quad b_{\mu} = \begin{pmatrix} -0.07 \\ -3.08 \\ 1.91 \\ 0 \end{pmatrix}, \quad c_{\mu} = \begin{pmatrix} -3.34 \\ -1.7 \\ -2.88 \\ 0 \end{pmatrix}, \quad d_{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_{\mu} = \begin{pmatrix} -0.2 \\ 8.32 \\ -5.16 \\ 0 \end{pmatrix}, \quad f_{\mu} = \begin{pmatrix} -1.43 \\ -0.73 \\ -1.23 \\ 0 \end{pmatrix}$$

"Solution" 3 (accuracy 10^{-12}):

No solutions for rotating strings found yet... urgent need for search algorithms optimization!

Zero, as the string has no rotation

Note:

Even the simplest case of the massive relativistic string requires non-zero extension coefficients!

Conclusion

- ATROPOS is a state-of-the-art string hadronization model that allows the full-scale detailed Monte-Carlo simulation of the string fragmentation process and hadron production.
- ATROPOS is **the first** model to introduce an approach to conserve angular momentum of the system during hadron production
- The use of modified Nambu-Goto action makes possible to treat the heavy c-, b-hadron production using the same technique, as for the light quarks
- The promising first results encourage to further improve such approach and continue the development of the model
- The consideration of the restrictions imposed by Virasoro conditions is done for the first time for the string hadronization model
- It is shown, that a very non-trivial ways need to be taken to properly define the non-massless relativistic string
- Much more improvements and results are upcoming!

Thank you for your attention!

String models of hadronization

LUND

String fragmentation functions:

$$f(z) \propto \frac{(1-z)^a}{z} e^{-\frac{bm^2}{z}}$$

- Quark masses violate initial postulates of the model
- Scaling-invariant
- Bowler modification for heavy quarks

Caltech-II (Area Decay Law)

$$S_{\text{string}} = -\kappa \int_{\sigma_1}^{\sigma_2} d\sigma \int_{\tau_1(\sigma)}^{\tau_2(\sigma)} d\tau \sqrt{(\dot{x}x')^2 - \dot{x}^2 {x'}^2}$$

Area law:

$$\frac{dP_{\text{break}}}{dA} = P_0 = \text{const}$$

- Approximation: initially point-like strings
- The simplest ansatz for initial conditions
- Non-physical segments on the strings to describe heavy quarks

Observed discrepancies with experimental data :

- π^0 cross-sections (especially for SoftQCD minimum-bias generators)
- Production of ρ^0 mesons in forward direction in hadron-nucleus interactions (important for extensive air showers)
- The Muon Puzzle: ratio $R = \frac{E_{\pi^0}}{E_{hadr}}$
 - Strange particles production
 - Resonance enhancement
 - Baryon enhancement

Both collective and non-collective effects matter!

T. Pierog, K. Werner, DOI: 10.22323/1.444.02300

• No angular momentum conservation!

Fragmentation algorithm

Conservation of 4-momentum at string-to-hadron transition: «hadron-string shoving» mechanism

Free parameters of the model. FPS-50

Parameter	Value	Description	
P ₀	0.5 GeV ²	Constant probability of string breaking per unit area of the world sheet	
$P_{u\overline{u}} = P_{d\overline{d}}$	0.3075	Relative probability of formation of a quark- antiquark pair	
$P_{uu\overline{uu}} = P_{dd\overline{dd}}$ $= P_{ud\overline{ud}}$	0.06	Relative probability of formation of a diquark- antidiquark pair	
$P_{S\bar{S}}$	0.145	Relative probability of formation of a quark- antiquark pair	
$P_{us\overline{us}} = P_{ds\overline{ds}}$	0.02	Relative probability of formation of a diquark- antidiquark pair	
$P_{ss\overline{ss}}$	0.02	Relative probability of formation of a diquark- antidiquark pair	
Е	0.2	Mass tolerance at string-hadron transition (SHMT)	
К	0.2 GeV ²	String tension	
MUT	1.5	Limit on string mass for further fragmentation (Mass Upper Threshold)	

Restrictions on hadron production

- The total angular momentum of the string must be conserved after the transition of its fragment into hadron
- System's total angular momentum is defined by the spin of the remaining fragment \vec{J}_{frag} , the spin of the hadron \vec{S}_{hadr} and the orbital angular momentum of their relative movement \vec{L}
- As we don't know, how exactly the transition happens, let us define the rule, that angular momentum can be conserved, if the maximum value of $\vec{J}_{\text{frag}} + \vec{S}_{\text{hadr}} + \vec{L}$ is larger than initial string spin \vec{J} :

$$J_{\rm frag} + S_{\rm hadr} + L \ge J$$

• We can now calculate the area in τ , σ – space where this rule is fulfilled for different break points

Note, that even in electron-positron interactions there is a significant fraction of strings with high angular momentum due to the transverse gluons. The fraction of restricted string-to-hadron transitions according to angular momentum conservation (when $\Delta J > 0$) is around 6%. This is, however, the most simple and least strict way to impose such law.

Multiplicity of charged particles (free strings approximation)

- There are difficulties with the tail of the distributions most likely due to an incorrect description of strings with heavy c- and b-quarks
- Small multiplicities deviation (probably) as the result of correction of experimental data using JETSET

- Preliminary result!
- The description of the fragmentation of systems with heavy quarks is introduced for the first time from the first principles of the theory (starting from the action of the string)
- Additional parameterizations may be necessary

Problems with hadronization

- Hadronization is a process of final state hadron production from quarks and gluons (partons)
- Common mistake is to believe that there is a complete and consistent wav of hadronization description

The muon puzzle

Reduced parameter Δz is obtained by subtracting from calculated z the z_{mass} , which is based mainly on X_{max} measurements, Global Spline Fit. Significant non-zero slope!

Around 30% - 60% more muons than expected according to models at high energies

Initially-extended strings

Dense region (core) -> rapid collective expansion

The question of the importance of consideration of initial extension of the quark-gluon strings arises.

What properties of hadron production this might change?

Gauge and initial conditions (for ATROPOS-v1.0)

• How to define initial conditions for a string made out of produced partons?

Initial momentum of the string (per unit σ) $\vec{p}(\sigma)$ is constructed from partons momentums as piecewise-linear functions:

=1 for quarks and 0.5 for gluons as they loose energy for two pieces of string

0 2

σ