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QCD Dhase Diagram 3

QCD at T and µ
(QCD at extreme conditions)

▶ Early Universe

▶ heavy ion collisions

▶ neutron stars

▶ proto- neutron stars

▶ neutron star mergers
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lattice QCD at non-zero baryon chemical potential µB 4

It is well known that at non-zero baryon chemical
potential µB lattice simulation is quite challenging due to
the sign problem
complex determinant

(Det(D(µ)))† = Det(D(−µ†))



QCD Dhase Diagram and Approaches 5

Methods of dealing with QCD

▶ Perturbative QCD

▶ First principle calculation
– lattice QCD
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QCD Dhase Diagram and Methods 6

Methods of dealing with QCD

▶ Perturbative QCD

▶ First principle calculation
– lattice QCD

▶ Effective models

▶ DSE, FRG

▶ Gauge/Gravity duality

▶ .....
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QCD Phase Diagram 7



Isospin imbalance 8

▶ Isotopic chemical
potential µI

Allow to consider systems
with isospin imbalance
(nn ̸= np).

▶ Neutron stars,
intermediate energy
heavy-ion collisions,
neutron star mergers Figure: taken from Massimo

Mannarelli

———————————————————————–
µI

2
q̄γ0τ3q = ν (q̄γ0τ3q) nI = nu−nd ←→ µI = µu−µd



Chiral imbalance 9

▶ Chiral (axial) chemical
potential

Allow to consider systems

with chiral imbalance

(difference between densities

of left-handed and

right-handed quarks).

n5 = nR − nL

µ5 = µR − µL J⃗ ∼ µ5B⃗,
———————————————————————–

The corresponding term in the Lagrangian is

µ5q̄γ
0γ5q

The corresponding term in the Lagrangian is

µ5 q̄γ
0γ5q



Chiral isospin imbalance 10

quarks quarks

µu
5 ̸= µd

5 and µI5 = µu
5 − µd

5

Term in the Lagrangian — µI5
2 q̄τ3γ

0γ5q = ν5(q̄τ3γ
0γ5q)

nI5 = nu5 − nd5, nI5 ←→ ν5



More external conditions to QCD 11

More than just QCD at (µ, T )

▶ more chemical potentials
µi

▶ magnetic fields

▶ rotation of the system Ω⃗

▶ acceleration a⃗

▶ finite size effects (finite
volume and boundary
conditions)

Hadronic 

matter

μ



More external conditions to QCD 12

▶ more chemical
potentials µi

▶ magnetic fields

▶ rotation of the system Ω⃗

▶ acceleration a⃗

▶ finite size effects (finite
volume and boundary
conditions)

Hadronic 

matter

μ
µ =

µB

3
, ν =

µI

2
, µ5, ν5 =

µI5

2



Recalling the dualities 13

Recall that in NJL model in 1/Nc
approximation or in the mean field there

have been found dualities

( It is not related to holography or gauge/gravity duality)

Chiral symmetry breaking ⇐⇒ pion condensation

Isospin imbalance ⇐⇒ Chiral imbalance



Duality in phase diagram 14

The TDP

Ω(T, µ, µi, ..., ⟨q̄q⟩, ...) Ω(T, µ, ν, ν5, ...,M, π, ...)
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Duality in phase diagram 14

The TDP
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Duality and conditions 15

▶ A lot of densities and imbalances
baryon, isospin, chiral, chiral isospin imbalances

▶ Finite temperature T ̸= 0

▶ Physical pion mass mπ ≈ 140 MeV

▶ Inhomogeneous phases (case)

⟨σ(x)⟩ = M(x), ⟨π±(x)⟩ = π(x), ⟨π3(x)⟩ = 0.

▶ Inclusion of color superconductivity
phenomenon



Dualities in QC2D

Similarity of SU(2) and SU(3)
▶ similar phase transitions:

confinement/deconfinement, chiral symmetry
breaking/restoration

▶ A lot of physical quantities coincide with some accuracy
Critical temperature, shear viscosity etc.

▶ There is no sign problem in SU(2) case and
lattice simulations at non-zero baryon density
are possible — (Det(D(µ)))† = Det(D(µ))

It is a great playground for studying dense matter



Possible phases and their Condensates 17

σ(x) = −2H(q̄q), ∆(x) = −2H
[
qciγ5σ2τ2q

]
π⃗(x) = −2H(q̄iγ5τ⃗ q), ∆∗(x) = −2H

[
q̄iγ5σ2τ2q

c
]

Condensates and phases

M = ⟨σ(x)⟩ ∼ ⟨q̄q⟩, CSB phase: M ̸= 0,

π1 = ⟨π1(x)⟩ = ⟨q̄γ5τ1q⟩, PC phase: π1 ̸= 0,

∆ = ⟨∆(x)⟩ = ⟨qq⟩ = ⟨qTCγ5σ2τ2q⟩, BSF phase: ∆ ̸= 0.



Dualities in QC2D 18
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(a) D1 : µ←→ ν, π1 ←→ |∆|, PC←→ BSF

J. Andersen, T. Brauner, D. T. Son, M. Stephanov, J. Kogut, ...

(b) D3 : ν ←→ ν5, M ←→ π1, PC←→ CSB

(c) D2 : µ←→ ν5, M ←→ |∆|, CSB←→ BSF



Structure of the phase diagram of two-color QCD 19

The phase diagram of (µ, ν, µ5, ν5)

The phase diagram
is foliation of
dually connected
cross-section of
(µ, ν, ν5) along the
µ5 direction



Universality of chiral imbalance µ5 20

CSBPC

SF

Chiral imbalance µ5 does not participate in dual
transformations



Lagrangian of QC2D: SU(4) symmetry 21

Lagrangian of two colour QCD can be written in the form

L = iΨ̄γµDµΨ

where Dµ = ∂µ + igAµ = ∂µ + ieσaA
a
µ

ΨT =
(
ψuL, ψ

d
L, σ2(ψ

C
R)

u, σ2(ψ
C
R)

d
)

Flavour symmetry is SU(4)
Pauli-Gursoy symmetry



Lagrangian of two colour NJL model 22

µB
3
ψγ0ψ +

µI
2
ψγ0τ3ψ +

µI5
2
ψγ0γ5τ3ψ + µ5ψγ

0γ5ψ



Lagrangian of two colour NJL model 23

M = µΨ†
(

1 0
0 −1

)
Ψ+

µI
2
Ψ†

(
τ3 0
0 −τ3

)
Ψ+

µI5
2
Ψ†

(
τ3 0
0 τ3

)
Ψ+ µ5Ψ

†
(

1 0
0 1

)
Ψ



Dualities in QC2D: approximations 24

Dualities D1, D2 and D3 were found in

▶ In the framework of effective NJL model

Without any approximation

▶ From first principles QC2D



Dual properties in three colour QCD 25

DI : ⟨ψ̄ψ⟩ ←→ ⟨iψ̄γ5τ1ψ⟩, M ←→ π, ν ↔ ν5

▶ In the framework of effective NJL model

Without any approximation

▶ From first principles QCD



Lattice QCD 26

Thermodynamic properties could be calculated in lattice
QCD

A. Bazavov et al. [HotQCD], Phys. Rev. D 90 (2014), 094503



Sound speed in QCD at finite T: skematic 27

There was discussed bound from holography

A. Cherman, T. D. Cohen and A. Nellore, Phys. Rev. D 80 (2009),

066003



Two possible scenario of speed of sound
at non-zero baryon density 3
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Figure 1. Two possible scenarios for the evolution of the speed of sound in dense matter.

For QCD at finite baryon density, we are unaware of compelling reasons to expect that c2S <

1/3, and based on the preceding arguments, we will consider two minimal scenarios, which are
illustrated in Fig. 1. The scenario labeled (a) corresponds to the case when we assume that QCD
obeys the conformal limit c2S < 1/3 at all densities, and scenario (b) corresponds to QCD violating
this conformal bound. The behavior of cS at low and high density is constrained by theory, and
we shall show that NS observations, when combined with improved ab initio calculations of PNM,
can distinguish between these two scenarios, and provide useful insights about matter at densities
realized inside NSs.

This paper is structured as follows. In Section 2, we present constraints on the speed of sound from
nuclear physics. In Section 3, we extend the speed of sound to higher densities. In Section 3.1, we
study the EOS under the assumption that the conformal limit is obeyed and the speed of sound is
bounded by 1/

√
3. For this case, we find that cS needs to increase very rapidly above 1 − 2n0 to

stabilize a 2 M� NS. Such a rapid increase likely signals the appearance of a new form of strongly
coupled matter where the nucleon is no longer a useful degree of freedom. In Section 3.2, we release
this assumption but still find that models in which cS increases rapidly, reaching values close to c,
are favored. We study correlations in our parameterization in Section 3.3. In Section 4, we derive the
smallest possible radius for NSs consistent with nuclear physics and observations. We then investigate
the impact of possible additional observations in Section 5. Finally, we summarize our main findings
in Section 6.

2. EOS AND SPEED OF SOUND FROM NUCLEAR PHYSICS

2.1. The EOS of neutron matter

In this work, we use auxiliary-field diffusion Monte Carlo (AFDMC) to find the many-body ground
state for a given nonrelativistic nuclear Hamiltonian (Carlson et al. 2014). In general, the nuclear
Hamiltonian contains two-body (NN), three-body (3N), and higher many-body (AN) forces,

H = T + VNN + V3N + VAN , (2)

taken from S. Reddy et al, Astrophys. J. 860 (2018) no.2, 149



Sign problem 29

It is well known that at non-zero baryon chemical
potential µB lattice simulation is quite challenging due to
the sign problem
complex determinant

Det(D(µ))† = Det(D(−µ))

For isospin chemical potential µI

Det(D(µI))
† = Det(D(µI))



Sound speed in QCD with non-zero isospin density 30

▶ Sound speed squared
has been obtained from
lattice QCD
simulations for
QCD with non-zero
isospin µI

B. B. Brandt, F. Cuteri and

G. Endrodi, JHEP 07, 055

(2023)
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Figure 10. Left: Results for the isospin density together with the spline interpolation at T = 0
obtained on 243 × 32 and 323 × 48 lattices and lattice spacings of a ≈ 0.22 and 0.15 fm. The yellow
part of the curve is obtained directly from the chiral perturbation theory expression for nI . Right:
Results for the isentropic speed of sound at T = 0, obtained from the spline interpolation of the left
panel. Also shown are the chiral perturbation theory result (dashed yellow line) with the pion decay
constant obtained from the fit discussed in the text as well as the conformal bound [24] (dashed
gray line).

introduced to distinguish between these two types of matter in neutron star cores. Finally,
we also look at the normalized trace anomaly [48],

∆ = 1

3
− p
ϵ
= I

3 ϵ
, (4.7)

which should be a number between −2/3 and 1/3 due to causality and thermodynamic
stability. Furthermore, in Ref. [48] it has been argued that ∆ ≥ 0.

4.2 Speed of sound at vanishing temperature

Before discussing the results for the isentropic speed of sound in the parameter space of
nonzero (T, µI), it is instructive to look at the limiting case of vanishing temperature. An
initial study of the EoS at T = 0 on a coarse lattice with a ≈ 0.29 fm has already been
presented in Refs. [23, 28]. Here we will present new results for the speed of sound at T = 0,
obtained on 243 × 32 and 323 × 48 lattices at lattice spacings of a ≈ 0.22 fm and a ≈ 0.15 fm,
respectively, including data up to µI/mπ ≈ 1. The results for these lattice spacings have
already been presented partly in Ref. [49] where they also have been compared to the
a ≈ 0.29 fm data.

The starting point for the extraction of the EoS at zero temperature is again the isospin
density, from which one can obtain the pressure and, consequently, all other thermodynamic
quantities, using Eq. (2.5). Due to the Silver Blaze property, the isospin density vanishes
outside of the BEC phase at T = 0. In practice, the simulations are performed at a small but
non-vanishing temperature, so that residual temperature effects on nI need to be corrected
in the vicinity of the transition. As already done in Ref. [23] we use chiral perturbation
theory [13] to correct for these T ≠ 0 effects. In particular, we fit the results for nI for
the two smallest values of µI within the BEC phase, i.e., we include the data points up

– 13 –



Sound speed in QCD with non-zero isospin density 31

▶ Sound speed squared
has been obtained from
lattice QCD
simulations for
QCD with non-zero
isospin µI for values of
µI up to 10mπ

R. Abbott et al. [NPLQCD],

Phys. Rev. D 108, no.11,

114506 (2023)
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FIG. 11. The ratio of the energy density of the many-pion
systems to the Stefan-Boltzmann prediction, Eq. (31), for the
A and B lattice ensembles. The blue (A) and red (B) shaded
regions represent interpolations of the LQCD results and their
uncertainties as discussed in Appendix C. Also shown are ex-
pectations from chiral perturbation theory (blue dashed line)
and perturbative QCD at next-to-leading order (NLO) [43]
(orange hatched region). The uncertainties on the perturba-
tive QCD result are obtained by varying the renormalization
scale Λ between µI/4 and µI .

The speed of sound is shown as a function of the isospin
chemical potential in units of the pion mass in Fig. 12
where it is seen to exceed the ideal gas limit. As for
the energy density, close agreement is seen between the
results from the two lattice ensembles. A similar result
has been found in Ref. [10]; however a larger range of
µI/mπ is accessible in the current work. In particular,
c2s exceeds 1/3 for 1.5 ≲ µI/mπ ≲ 14, rising to a maxi-
mum of c2s,max ∼ 0.6 at µI ∼ 2mπ before decreasing back
to the ideal-gas limit for large µI . A maximum speed
of sound above the ideal-gas limit at intermediate values
of chemical potential is also seen in two-color QCD [50]
and quarkyonic models [51], but is in contradiction to
the predictions of leading-order chiral perturbation the-
ory in which cs rises monotonically to 1. This behavior
is indicative of additional degrees of freedom other than
in-vacuum pions becoming excited in the medium. From
the numerical results herein, it remains an open ques-
tion as to whether the speed of sound approaches the
free gas limit from below (as expected from perturbation
theory [43]) or from above (as expected from resummed
perturbation theory [52] or from the inclusion of power
corrections [53]).

Two additional quantities that provide information
about the nature of high-isospin-density matter are the
polytropic index [54] and the trace anomaly [55] defined
by

γ =
ϵ

p
c2s, (33)

∆ =
1

3
− p

ϵ
, (34)
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FIG. 12. The squared speed of sound computed as in Eq. (32)
as a function of the isospin chemical potential on ensemble A
(blue) and ensemble B (red). The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

respectively. The behavior of these two quantities is
shown in Figs. 13 and 14 and compared to the expec-
tations of a free gas, χPT and pQCD in each case. As
for cs, the behaviour of γ and ∆ is similar to that seen in
Ref. [10], but the current work extends the range of chem-
ical potential significantly which reveals additional inter-
esting features. In Ref. [54], it is suggested that the point
at which the polytropic index decreases below 1.75 is a
sign of quark degrees of freedom at large baryon chemical
potential, i.e., the BCS state. In the case of isospin chem-
ical potential, γ decreases to this value at µI ∼ 1.5mπ,
corresponding approximately to the position of the peak
seen in the normalized energy density (Fig. 11). The
trace anomaly is clearly seen to be negative at interme-
diate µI in Fig. 14, as is suggested to be consistent with
neutron star observations in Ref. [55]. As for the quanti-
ties above, the results from the two lattice ensembles are
in agreement for both the trace anomaly and the poly-
tropic index. A robust conclusion from the study of these
transport quantities is that large isospin chemical poten-
tial is needed before the expected asymptotic behavior
sets in. At least for the case of isospin chemical poten-
tial, the use of pQCD to describe the behavior seen in
the LQCD calculations requires µI ≳ 10mπ ∼ 2 GeV at
a minimum.

VI. SUMMARY AND OUTLOOK

In this work, a new, more efficient method of com-
puting maximal-isospin, multi-pion correlation functions
is presented. Using this method, we have calculated
all n-π+ correlation functions for n ≤ 6144, extending
such calculations of many-pion systems into regions of
larger isospin chemical potential than have been previ-



Duality: speed of sound 32

Duality between chiral symmetry breaking and
pion condensation

D : M ←→ π, ν ←→ ν5

The TDP of the quark matter

Ω(T, µ, ν, ν5, µ5, |M, π) = inv

The speed of sound c2s =
dp

dϵ

Ω(T, ...) =⇒ c2s(T, ...)



Duality: speed of sound 33

The speed of sound c2s =
dp

dϵ
, Ω(T, ...) =⇒ c2s(T, ...)

Ω(T, ..., ν) = Ω(T, ..., ν5) =⇒ c2s(T, ..., ν) = c2s(T, ..., ν5)



Sound speed in QCD at µ5: skematic 34

Duality

ν5 ←→ µ5, M ̸= 0, ⟨π⟩ = ⟨∆⟩ = 0

▶ Sound speed squared

for QCD with
non-zero

chiral imbalance µ5

only in the
framewwork of
effective model



Speed of sound in QCD: First principles 35

————————————————————————————



Speed of sound in QCD: Effective models 36

————————————————————————————



Two colour QCD: QC2D 37

Two colour QCD case

QC2D

No sign problem in SU(2) case at µB ̸= 0

(Det(D(µ)))† = Det(D(µ))



Sound speed in two color QCD 38

▶ Sound speed squared
has been obtained from
lattice QCD
simulations for two
color QCD

E. Itou and K. Iida,
PoS LATTICE2023, 111
(2024);

PTEP 2022 (2022) no.11,

111B01

PTEP 2022, 111B01 K. Iida and E. Itou

Fig. 3. Top: The EoS as a function of μ/mPS. Bottom: Sound velocity squared as a function of μ/mPS.
The horizontal line (orange) denotes the value in the relativistic limit, c2

s /c2 = 1/3. The blue curve shows
the result of ChPT.

from below. On the other hand, a result based on the resummed perturbation theory suggests
that c2

s/c2 approaches the limit from above [39]. In the numerical simulations, the maximum
value of μ is limited by μ 
 1/a to avoid the strong lattice artefact. Otherwise, the hopping
term of fermions would be partially suppressed by the factor e−aμ in the Wilson–Dirac opera-
tor. For the extension to larger chemical potential, we need to perform smaller lattice spacing
or lighter quark mass simulations. Furthermore, to obtain cs at T = 0, it is also required to see
the EoS in the lower temperature regime by carrying out the larger volume simulations.

According to Ref. [9], a peak of c2
s appears due to the development of the quark Fermi sea

just after the saturation of low momentum quarks. The density at which the peak appears in
our results is apparently low, i.e., μ ≈ mPS, but seems sufficiently high that the quark Fermi
sea would be fully developed. It supports the predictions from several effective models based
on the presence of the quark Fermi sea [8–10]. Furthermore, it is reported that the peak of
sound velocity emerges around BEC–BCS crossover also in condensed matter systems with
finite-range interactions [40]. To ask whether or not the emergence of the peak structure is a
universal property of superfluids in a BEC–BCS crossover regime, it would be important to
investigate the origin of this structure as another future work. If the peak of sound velocity is
a universal property even for real 3-color QCD, as discussed in Refs. [9,10], then it will change
one of the conventional pictures that explain the presence of massive neutron stars, namely, a
first-order transition from stiffened hadronic matter to soft quark matter.
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Duality structure in QC2D 39

————————————————————————————



Sound speed in QC2D at µ5: skematic 40

Duality ν5 ←→ µ5

was shown in two color effective model as well

▶ Sound speed squared

for QCD with
non-zero

chiral imbalance µ5

only in the
framewwork of
effective model



Speed of sound in QC2D: First principle 41

————————————————————————————



Speed of sound in QC2D: Effective models 42

————————————————————————————



Speed of sound 43

Dualities has been proveen from first principles

Speed of sound exceeding the conformal
limit is rather natural and taking place in a lot
of systems, with various chemical potentials

And it is natural if it has similar structure in
QCD at non-zero baryon density, the most
interesting case


