

Elliptic flow of π^0 in U+U and ³He+Au collisions

E.V. Bannikov, Ya.A. Berdnikov, D.O. Kotov

(For the PHENIX Collaboration)

Peter the Great St.Petersburg Polytechnic University (SPbPU), Russia

We acknowledge support from Russian Ministry of Education and Science, state assignment for fundamental research (code FSEG-2024-0033)

1. Azimuthal anisotropy

2

Our previous work: v_2 of π^0 in Cu+Au collisions at 200 GeV

^{*}Phys. Rev. C 88, 064910 (2013)

1. π^0 mesons:

Its production is measurable up to $\sim 16 - 20$ GeV/c

=> Good probe to study the mechanism of v_2 development in different kinematic regions of large and small collision systems

2. U + U collisions:

²³⁸*U* has spherically asymmetric shape

 \Rightarrow Different type of initial configurations*

 \Rightarrow Effective way to study the dependency of v_2 on the initial conditions

*Phys. Rev. C 85, 034905 (2012)

Au+Au ⇔ U+U

In full-overlap U+U collisions, the eccentricity can be increased without decreasing the fireball size (tip-tip => side-side collisions)

=> Effective way to study parton energy losses (jet quenching)**

**Phys. Rev. Lett. 94, 132301 (2005)

³He+Au

3. 3 He + Au collisions:

The second order azimuthal anisotropy values in the most central collisions of small systems follow the prediction of hydrodynamical models:

Nat. Phys. 15, 214–220 (2019)

Extension of centrality range => v_2 values – interplay between flow and nonflow effects.*

The analysis of v_2 of π^0 in He+Au collision is still in work!

*Phys. Rev. C 107, 024907 (2023)

3. PHENIX experiment at RHIC

The class of event centrality was determined using beam-beam counters (**BBC**)

The kinematic properties of the photons were determined using the electromagnetic calorimeter (EMCal), which consists of **6 PbSc** and **2 PbGl sectors (** $|\eta| < 0.35$).

The muon piston calorimeter (**MPC**) and **BBC** were used for event plane determination $(3.1 < |\eta| < 3.9)$

4. π^0 mesons yields extraction

The common procedure of signal extraction:

Signal = Foreground – Background

EMCal was used to register photons, that passed all analysis cuts -> Foreground

Background: the mixed event technique. Background consists of correlated and uncorrelated parts.

An example of signal photon pairs distribution after background subtraction (*Approximation*: gauss function for signal and pol2 for the correlated part of background)

Clean signal after subtracting the correlated part of background (*Approximation*: gauss function)

5. Event plane. Resolution

To quantify v_2 of π^0 we used **event-plane method***.

Event plane distribution has anisotropy due to finite acceptance of detectors** (Raw) =>

- Recentering;
- Flattening

Resolution of the event plane was calculated via two sub-events method:

$$Res(\Psi_2^{MPC}) = \sqrt{2\langle \cos 2(\Psi_2^{MPCS} - \Psi_2^{MPCN}) \rangle}$$
$$Res(\Psi_2^{BBC}) = \sqrt{2\langle \cos 2(\Psi_2^{BBCS} - \Psi_2^{BBCN}) \rangle}$$

Final v_2 values are determined using the event plane measured in the MPC detector (Ψ_2^{MPC}).

<u>*arXiv:0809.2949</u> **Phys. Rev. C **77**, 034904 (2008)

9

6. v_2 measurement method

The raw yield extractions of $\gamma\gamma (d N/d(\varphi - \Psi_2^{MPC}))$ were performed in **6 ranges**: $0 < \varphi - \Psi_2^{MPC} < \pi/2$

24.10.2024

MEPhI, 7th International Conference on Particle Physics and Astrophysics 2024

6. v_2 measurement method

The raw yield extractions of $\gamma\gamma (d N/d(\varphi - \Psi_2^{MPC}))$ were performed in **6 ranges**: $0 < \varphi - \Psi_2^{MPC} < \pi/2$

7. Results

The v_2 values increase with p_T up to ~ 3 GeV/c and then tend to decrease

Strong centrality dependence of v_2 values: the elliptic flow increases from central to peripheral

7. Results

 ε_2 and $N_{part}^{1/3}$ values for U+U collisions values are from *Phys. Rev. C* **85**, 034905 (2012)

$$v_2^{UU} \geq v_2^{AuAu} > v_2^{\mathcal{C}uAu}$$
 up to ~4 GeV/cc

The $v_2/\varepsilon_2 N_{part}^{1/3}$ values are consistent within the uncertainties in Cu+Au, Au+Au and U+U collisions up to ~4 GeV/c,

at $p_T > 4$ GeV/c the $v_2/\varepsilon_2 N_{part}^{1/3}$ values of π^0 in U+U collisions differs from similar values in other systems.

The v_2 values of π^0 and K_s^0 (from STAR) as a function of KE_T are consistent within the uncertainties

8. Conclusions

- ✓ The π^0 elliptic flow values as a function of p_T and centrality in U+U collision system at 193 GeV were obtained;
- ✓ It was found that the $v_2/\varepsilon_2 N_{part}^{1/3}$ values for π^0 are consistent within the uncertainties in Cu+Au, Au+Au and U+U collisions up to ~4 GeV/c => the size and geometry of the collision system does not seem to affect the $v_2/\varepsilon_2 N_{part}^{1/3}$ values for π^0 (hydro region). From ~4 GeV/c v_2 values of π^0 in U+U collisions are smaller than others => It may be due to specific geometric configurations of the uranium nucleus.
- ✓ Obtained v_2 values for π^0 are nonzero at high transverse momentum $(p_T > 5 \ GeV/c)$. It could be explained in terms of **parton energy loss models**. Further studies of v_2 of π^0 at high p_T will allow to quantify the parton energy loss in the medium formed in U+U collisions **especially in the full-overlap region**;
- ✓ Further investigation of obtained v_2 values by using different Glauber parametrization of ²³⁸v radius allow to investigate **the impact of the initial conditions on** v_2 **development**;
- ✓ The analysis devoted to v_2 measurement in ³He+Au collisions is still in progress. Stay tuned!

8. Conclusions

- ✓ The π^0 elliptic flow values as a function of p_T and centrality in U+U collision system at 193 GeV were obtained;
- ✓ It was found that the $v_2/\varepsilon_2 N_{part}^{1/3}$ values for π^0 are consistent within the uncertainties in Cu+Au, Au+Au and U+U collisions up to ~4 GeV/c => the size and geometry of the collision system does not seem to affect the $v_2/\varepsilon_2 N_{part}^{1/3}$ values for π^0 (hydro region). From ~4 GeV/c v_2 values of π^0 in U+U collisions are smaller than others => It may be due to specific geometric configurations of the uranium nucleus.
- ✓ Obtained v_2 values for π^0 are nonzero at high transverse momentum $(p_T > 5 \ GeV/c)$. It could be explained in terms of **parton energy loss models**. Further studies of v_2 of π^0 at high p_T will allow to quantify the parton energy loss in the medium formed in U+U collisions **especially in the full-overlap region**;
- ✓ Further investigation of obtained v_2 values by using different Glauber parametrization of ²³⁸v radius allow to investigate **the impact of the initial conditions on** v_2 **development**;
- The analysis devoted to v_2 measurement in ³He+Au collisions is still in progress. Stay tuned!
 Thank you for your attention!