K*(892) meson production in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

S. Antsupov¹, Ya.Berdnikov¹, D.Kotov¹, D.Larionova¹ for the PHENIX collaboration

¹Peter the Great St.Petersburg Polytechnic University

October 25, 2024

We acknowledge support from Russian Ministry of Education and Science, state assignment for fundamental research (code FSEG-2024-0033)

A Physics Experiment at RHIC

Introduction

Quark-gluon plasma (QGP) is an exotic state of matter in which quarks and gluons are not bound into hadrons. Quark-Gluon Plasma 250 Primordial Universe (<10⁻⁶ s) Temperature (MeV) 200 150 Hadronic gas Phase 100 Transition Neutron Stars 50 "Solid" state "Ordinary" state π Net baryonic density (normalised, d/d_0) 0 5 8

Introduction

We expect to detect the following QGP observables in our work:

- Strangeness enhancement enhanced production of strange quarks.
- Jet quenching energy loss of partons that constitute high energy jets.

 $K^{*0}(892)$ (or $K^*(892)$ for this report) is a strange meson (it contains a strange quark). Lifetime $\tau\approx 1.3\cdot 10^{-23}$ s In our work we observe $K^*(892)$ with the use of the decay mode $K^*(892) \to K^\pm \pi^\mp$

Analysis workflow

- **O** Extraction of charged hadrons from the raw data from PHENIX experiment.
- Formation of invariant mass distribution from extracted charged hadrons and extraction of the signal of K*(892).
- Setimation of $K^*(892)$ reconstruction efficiency using Monte-Carlo (MC).
- Setimation of $K^*(892)$ invariant p_T spectra, R_{AB} , R_{CP} .

Experimental apparatus

$K^*(892)$ signal extraction

(a) $K^{\pm}\pi^{\pm}$ invariant mass distribution in 0-20% centrality class in 1.4 < p_T < 1.7 range

(b) $K^{\pm}\pi^{\pm}$ invariant mass distribution in 0-20% centrality class in 4.0 $< p_T <$ 4.5 range

- Red solid line foreground (Relativistic Breit-Wigner) + background approximation
- Red dashed line background approximation

$K^*(892)$ invariant p_T spectra estimation

Reconstruction efficiecny was estimated using Monte-Calro (MC) with the following formula:

$$\epsilon = \frac{N_{reconstructed}}{N_{generated}} \tag{1}$$

Where

- $N_{generated}$ number of generated $K^*(892)$ particles in MC,
- $N_{reconstructed}$ number of reconstructed $K^*(892)$ particles in MC.

We then estimated the $K^*(892)$ invariant p_T spectra with the use of the following formula:

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dy dp_T} = \frac{1}{2\pi p_T \epsilon} \frac{d^2 Y_{raw}}{dy dp_T}$$
(2)

Where

- Y_{raw} raw yield of $K^*(892)$ in the experiment,
- y rapidity.

$K^*(892)$ invariant p_T spectra

The invariant p_T distribution of $K^*(892)$ was measured at 0.9 $< p_T < 6.5$ GeV/c and for 0-20%, 20-40%, 40-60%, 60-93%, MB centrality classes.

- Dashed lines exponential fits
- Solid lines Levy fits

Figure: $K^*(892)$ invariant p_T spectra in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Nuclear modification factors R_{AA} estimation

We estimated $K^*(892)$ R_{AA} with the use of the following formula:

$$R_{AB} = \frac{1}{N_{coll}} \frac{1/2\pi p_T \ d^2 N_{AB} / dy dp_T}{1/2\pi p_T \ d^2 N_{pp} / dy dp_T}$$
(3)

Where

- N_{coll} average number of nucleon-nucleon collisions in A+B collision,
- $1/2\pi p_T d^2 N_{AB}/dydp_T$ invariant p_T spectra in A+B collision,
- $1/2\pi p_T d^2 N_{pp}/dydp_T$ invariant p_T spectra in p+p collision.

 $K^*(892)$ R_{AA} were measured at $0.9 < p_T < 6.5$ GeV/c and for 0-20%, 20-40%, 40-60%, 60-93%, MB centrality classes.

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled gray boxes on the right of each picture represent *N_{coll}* uncertainties

Figure: $p + \bar{p} R_{AB}$ in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled gray boxes on the right of each picture represent *N_{coll}* uncertainties

Figure: $p + \bar{p}$, $K^*(892)$ R_{AB} in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled gray boxes on the right of each picture represent *N_{coll}* uncertainties

Figure: $p + \bar{p}$, $K^*(892)$, $\varphi(1020)$ R_{AB} in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled gray boxes on the right of each picture represent *N_{coll}* uncertainties

Figure: $p + \bar{p}$, $K^*(892)$, $\varphi(1020)$ and $\pi^0 R_{AB}$ in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled gray boxes on the right of each picture represent *N_{coll}* uncertainties

Nuclear modification factors R_{CP} estimation

We estimated $K^*(892)$ R_{AA} with the use of the following formula:

$$R_{CP} = \frac{N_{coll}^{peripheral}}{N_{coll}^{central}} \frac{1/2\pi p_T \ d^2 N_{AB}^{central} / dydp_T}{1/2\pi p_T \ d^2 N_{AB}^{peripheral} / dydp_T}$$
(4)

Where

- *N*^{central}, *N*^{peripheral} average number of nucleon-nucleon collisions in A+B collision in central and peripheral centrality classes respectively,
- 1/2πp_T d²N_{AB}^{central}/dydp_T, 1/2πp_T d²N_{AB}^{peripheral}/dydp_T invariant p_T spectra in A+B collision in central and peripheral centrality classes respectively.

 $K^*(892)$ R_{CP} were measured at 0.9 < p_T < 6.5 GeV/c for 0-20%/40-60% and 0-20%/60-93% centrality classes ratios.

Figure: $K^*(892) R_{CP}$ in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled gray boxes on the right of each picture represent N_{coll} uncertainties

Figure: $p + \bar{p} R_{CP}$ in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled colored boxes on the right of each picture represent N_{coll} uncertainties of the corresponding particles with the same color of the marker.

Figure: $p + \bar{p}$, $K^*(892)$ R_{CP} in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled colored boxes on the right of each picture represent N_{coll} uncertainties of the corresponding particles with the same color of the marker.

Figure: $p + \bar{p}$, $K^*(892)$, $\varphi(1020)$ R_{CP} in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled colored boxes on the right of each picture represent N_{coll} uncertainties of the corresponding particles with the same color of the marker.

Figure: $p + \bar{p}$, $K^*(892)$, $\varphi(1020)$ and π^0 , and R_{CP} in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled colored boxes on the right of each picture represent N_{coll} uncertainties of the corresponding particles with the same color of the marker.

Conclusions

- We observed that values of R_{AA} and R_{CP} for $K^*(892)$ and $\varphi(1020)$ are close and are mostly within uncertainties of each other thus the impact of effects of suppression and enhancement are similar for both $K^*(892)$ and $\varphi(1020)$.
- We observed the difference of R_{AA} and R_{CP} between $K^*(892)$ and $p + \bar{p}$ which can be explained by the recombination models. This is because recombination models predict higher baryon yield than meson yield.
- We observed the difference of R_{AB} and R_{CP} between $K^*(892)$ and π^0 which can also be explained by the recombination models. Recombination models predict thermal over shower partons recombination dominance for $K^*(892)$ and $\varphi(1020)$ up to 6 GeV/c in p_T due to the strangeness enhancement while the same dominance for π^0 only spans up to 3 GeV/c.

Thank you for your attention!

Backup: previous measurements (STAR) of $K^*(892)$ in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

Our result of $K^*(892)$ R_{AA} in 0-20% centrality class and STAR result of $K^*(892)$ R_{AA} in 0-10% centrality class in Au+Au @ $\sqrt{s_{NN}} = 200$ GeV Our values are almost 2 times bigger than STAR values

Possible explanation: STAR employs both $K^{*0}(892)$ and $K^{*\pm}(892)$ for the calculation of invariant p_T spectra and R_{AA}

Backup: Explanation of STAR vs PHENIX $K^*(892)$ discrepancy

Backup: Comparison of $K^*(892)$ R_{AA} on PHENIX vs estimated R_{AA} of $K^*(892)$ on STAR

Backup: Comparison of $K^*(892)$ R_{AA} on PHENIX vs estimated R_{AA} of $K^*(892)$ on STAR

Backup: Comparison of neutral $K^*(892)$ R_{AA} on PHENIX vs estimated R_{AA} of neutral $K^*(892)$ on STAR

Figure: $K^*(892)$ R_{AA} in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

- Error bars represent statistical uncertainties
- Colored empty boxes represent systematic uncertainties
- Filled gray boxes on the right of each picture represent *N_{coll}* uncertainties