

PETERSBURG NUCLEAR PHYSICS INSTITUTE NAMED BY B.P. KONSTANTINOV OF NATIONAL RESEARCH CENTRE «KURCHATOV INSTITUTE»

Study of $\varphi(1020)$, $\rho(770)$ and $K^*(892)$ resonance production in Bi+Bi collisions at $\sqrt{s_{NN}} = 9.2$ GeV in the MPD detector at NICA collider

Ya. Berdnikov, <u>D. Ivanishchev</u>, D. Kotov, M. Malaev, A. Riabov (SPbPU and NRC «Kurchatov Institute» - PNPI) for the MPD collaboration

We acknowledge support from Russian Ministry of Education and Science, state assignment for fundamental research (code FSEG-2024-0033)

25 October 2024

MPD at NICA

•One of two experiments at NICA collider to study heavy-ion collisions at $\sqrt{s_{NN}} = 4 - 11$ GeV

•NICA will study QCD medium at extreme net baryon densities $\rightarrow 1^{st}$ order phase transition + QCD CEP •Many ongoing (NA61/Shine, STAR-BES) and future experiments (CBM) in ~ same energy range

Resonances as a probe of heavy-ion collisions

Resonances in heavy-ion collisions

•Wide variety of resonances in the PDG, most often/easily measured are:

770)	K*(892)) ⁰ K*(892) ⁺	(1020)	Σ(1385) [±]	Λ(1520)	Ξ(1530)	
$\frac{d\bar{u} + d\bar{d}}{\sqrt{2}}$	ds	นริ	SS	uus dds	uds	uss	
P	article	Mass (MeV/ c^2)	Width (MeV/ c^2)	Decay	BI	BR (%)	
	ρ ⁰	770	150	π+π-		100	
	K [*]	892	50.3	π±Ks	2	33.3	
	K*0	896	47.3	πΚ+		56.7	
φ		1019	4.27	K+K-	4	48.9	
	Σ*+	*+ 1383		π+Λ		87	
	Σ*-	1387	39.4	πΛ		87	
Λ(1520)		1520	15.7	K-p	2	22.5	
	Ξ* ⁰	1532	9.1	π+Ξ-		66.7	

- •Vacuum properties of the resonances are well defined (m, τ , BR etc.)
- •Copiously produced in heavy-ion collisions at ~ GeV energies, large branching ratios in hadronic decay channels → possible to measure
- •Probe reaction dynamics and particle production mechanisms vs system size and $\sqrt{s_{NN}}$:
 - \checkmark hadron chemistry and strangeness production, ϕ with hidden strangeness is one of the key probes
 - ✓ reaction dynamics and shape of particle p_T spectra, p/K^* , p/ϕ vs p_T
 - \checkmark lifetime and properties of the hadronic phase
 - ✓ spin alignment of vector mesons in rotating QGP (polarization of quarks from spin-orbital interactions)
 - ✓ flow, comparison with e^+e^- measurements, jet quenching, background for other probes etc

Hadronic phase and medium modifications

•Resonances have small lifetime of $\tau \sim 1 - 45$ fm/*c*, part of them decays in the fireball

	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	\$(1020)
_τ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$

Reconstructed resonance yields in heavy ion collisions are defined by:

✓ resonance yields at chemical freeze-out

✓ hadronic processes between chemical and kinetic freeze-outs:

rescattering: daughter particles undergo elastic scattering or pseudo-elastic scattering through a different resonance \rightarrow parent particle is not reconstructed \rightarrow loss of signal **regeneration**: pseudo-elastic scattering of decay products ($\pi K \rightarrow K^{*0}$, $KK \rightarrow \phi$ etc.) \rightarrow increased yields

• Precise measurements at NICA are needed to validate description of the hadronic phase in models

- suppressed production of short-lived resonances ($\tau < 20 \text{ fm/}c$) in central A+A collisions \rightarrow rescattering takes over the regeneration
- •no modification for longer-lived resonances, ϕ -meson ($\tau \sim 40 \text{ fm/}c$)
- •yield modification depends on event multiplicity, not on collision system/energy

Resonance reconstruction

- •Hadronic decays of resonances are studied with the invariant mass method in the experiments
- •After subtraction of uncorrelated combinatorial background estimated with mixed-event pairs, like-sigh pairs, rotation pairs etc., the resonance peaks are approximated with a given peak-model (rBW + mass resolution + mass-dependent width + phase space correction + ...) + background function
- •Examples of invariant mass distributions and fits from ALICE for ϕ , $\Lambda(1520)$ and $\rho(770)^0$:

- •For most of the cases, the peak models are inspired by theory and measurement in elementary e^+e^- and/or pp collisions where medium effects are not as important
- •Line shape modifications will result in the change of the measured yield and masses/widths

Studies for resonances reconstruction possibility at NICA-MPD in Bi+Bi collisions at $\sqrt{s_{NN}} = 9.2$ GeV

Reconstruction efficiencies and Mass resolutions

- •Full chain simulation and reconstruction with UrQMD v.3.4 (BiBi@9.2 GeV, 50M events) •Particles propagation through the MPD with 'mpdroot' (Geant v.4):
- ✓ realistic simulation of subsystem response (raw signals)
- ✓ track/signal reconstruction and pattern recognition
- •Typical reconstruction efficiencies ($A \ge 0.5$) at different centralities, |y| < 0.5

•Reasonable efficiencies in the wide p_T range, |y| < 0.5

•Measurements are possible from 0 momentum for $K^*(892)^0$, $\rho(770)$ and from 0.2 - 0.4 GeV/cfor $\phi(1020)$

$\phi(1020)$, reconstructed peaks

•Full chain simulation and reconstruction, $p_T = 0.4 - 0.6 \text{ GeV}/c$, $\phi(1020) \rightarrow K^+ + K^-$, |y| < 0.5

- •Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- •Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ free parameter)
- •Signal can be reconstructed at $p_T > 0.2 \text{ GeV}/c$, high- p_T reach is limited by available statistics
- •S/B ratios deteriorates with increasing centrality

$K^*(892)^0$, reconstructed peaks

•Full chain simulation and reconstruction, $p_T = 0.0 - 0.2 \text{ GeV}/c$, $K^*(892)^0 \rightarrow \pi^{\pm} + K^{\mp}$, |y| < 0.5

- •Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- •Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ free parameter)
- •Signal can be reconstructed at $p_T > 0$, high- p_T reach is limited by available statistics
- •S/B ratios deteriorates with increasing centrality

$\rho(770)$, reconstructed peaks

•Full chain simulation and reconstruction, centrality 0-10%, $\rho(770) \rightarrow \pi^+ + \pi^-$, |y| < 0.5

- •Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- •Distributions are fit to Voigtian function + polynomial (mass resolution fixed to estimated value, Γ free parameter)
- •Signal can be reconstructed at $p_T > 0$, high- p_T reach is limited by available statistics
- •S/B ratios deteriorates with increasing centrality

Production spectra and MC closure test

•Full chain simulation and reconstruction, ranges are limited by the possibility to extract signals, |y| < 0.5

•Reconstructed spectra match the generated ones within uncertainties

- •First measurements for resonances in centrality dependent analysis will be possible with accumulation of ~ 10^8 Bi+Bi@9.2 GeV events
- •Measurements are possible starting from ~ zero momentum \rightarrow sample most of the yield, sensitive to possible modifications

Conclusions and outlook

- Measurement of resonances contribute to the MPD physical program
 ✓ hadronic phase properties, strangeness production, hadronization mechanisms and collectivity, hadrochemistry, spin alignment etc ...
- •First measurements for $\rho(770)$, $K^*(892)^0$, $\phi(1020)$ resonances in centrality dependent analysis will be possible with ~10⁸ sampled Bi + Bi collisions at $\sqrt{s_{NN}} = 9.2$ GeV
- •Measurements are possible starting from very low momenta (for most of the cases from zero momenta) with decent mass resolution \rightarrow high sensitivity to different physics phenomena most prominent at low p_T
- •Feasibility study of the reconstruction of other resonances such as $K^*(892)^{\pm} \rightarrow \pi^{\pm} K_s$, $\Sigma(1385)^{\pm} \rightarrow \pi^{\pm} \Lambda$, $\Lambda(1520) \rightarrow pK^{-}$ in Bi + Bi collisions at $\sqrt{s_{NN}} = 9.2$ GeV is required for systematic study of resonance production and is in progress

Backup

$\rho(770)$, peak shape and correlated background

40 20 0

0.4

0.6

0.8

1.2

1.4

•Full chain simulation and reconstruction, centrality 0-10%, $\rho(770) \rightarrow \pi^+ + \pi^-$, |y| < 0.5

Peak-like contribution from:
✓ K_s⁰→π⁺π⁻
✓ ω→π⁺π⁻π⁰ (with missing π⁰)
✓ K^{*}(892)⁰→π[±]K[±] (with misidentified kaon)
Contributions must be measured in advance and subtracted (or accounted for)

- •Resonances peak shape Breit-Wigner (BW) with peak shape modifications:
- ✓ detector mass resolution
- \checkmark dependence of resonance width on mass (for wide resonances)
- \checkmark phase space correction
- ✓ Bose-Einstein correlations
- ✓ mass dependence of reconstruction efficiency (for wide resonances)
 ✓ (Partial) restoration of chiral symmetry
- Hadronic phase modifications (rescattering of daughter particles, regeneration)

$$BW(M) = A \frac{MM_0 \Gamma(M)}{(M_0^2 - M^2)^2 + M_0^2 \Gamma(M)}$$
$$\Gamma(M) = \left[\frac{(M^2 - 4m_\pi^2)}{(M_0^2 - 4m_\pi^2)}\right]^{3/2} * \Gamma_0 * \binom{M_0}{M}$$

1.6

M_{KK} (GeV/c²)

Feasibility studies, framework

- •50M simulated minimum bias Bi+Bi collisions at $\sqrt{s_{NN}} = 9.2$ GeV using UrQMD 3.4 with default settings
- •Tracked simulated particles through the MPD detector using mpdroot
- •Decays of $\rho(770) \rightarrow \pi^+\pi^-$ ($\tau \sim 1.3 \text{ fm/}c$); $K^*(892)^0 \rightarrow \pi^\pm K^\mp$ (~4); $\phi(1020) \rightarrow K^+K^-$ (~46) were reconstructed by combining all daughter particles within an event
- •Analysis cuts were optimized for higher signal significance (no p_T variation)
- •Event selection:

```
✓ |z_{vrtx}| < 130 cm, realistic distribution with \sigma_z ~ 50 см
```

• Basic track selections:

✓ number of TPC hits > 10

```
\checkmark |\eta| < 1.0
```

```
\checkmark p_T > 100 \text{ MeV/}c
```

✓ TPC-TOF combined PID within 2σ

 \checkmark TPC-refit for kaons and protons based on track PID hypothesis

• Primary tracks:

 \checkmark |DCA(*x*,*y*,*z*)| < 2 σ

•Pairs:

 $\checkmark |y| < 0.5$

•Combinatorial background:

✓ event mixing ($|\Delta_{Zvrtx}| < 2 \text{ cm}, |\Delta_{Mult}| < 20, N_{ev} = 10$)

Reconstruction efficiencies 2D

- •Reasonable efficiencies in the wide p_T range, |y| < 0.5
- •Measurements are possible from 0 momentum for $K^*(892)^0$, $\rho(770)$ and from 0.2 0.4 GeV/c for $\phi(1020)$