Study of proton and light nuclei production in Ar-nucleus collisions in the BM@N experiment at NICA

V.Kolesnikov, M.Kapishin, L.Kovachev on behalf of the BM@N experiment

7th International Conference on Particle Physics and Astrophysics Moscow, Russia, 22-25 October 2024

Outline

- NICA accelerator complex and prospects for cluster measurements
- Recent results on *p*,*d*,*t* production in Ar+A from the BM@N experiment at NICA
- Summary

NICA – Nuclotron-based Ion Collider

- Chain of accelerators providing ion beams (from *p* to Au) for fundamental physics studies & applied research
- Modern detectors for study dense nuclear matter and spin phenomena (MPD, SPD, BM@N)
- Experimental zone with beam lines for physics study and applied research
- Cryogenic infrastructure for production, testing and supply superconducting elements

Heavy-ion collisions and QCD phase diagram

- QCD phase diagram: rich structure and variety of conditions (from Early Universe to Neutron Stars)
- Experimental searching of characteristic points and transition lines is crucial limiting confirmation so far

NICA/BM@N energies:

- Baryon dominated nuclear matter: particle production mainly through excitation and decay of baryon resonances
- In-medium effects play a role in hadron production

NICA: dense matter at non-zero μ_{B} and moderate T

- baryon density up to $10\rho_0$, freeze-out net-baryon density the highest
- $\mu_{B} = (300 750) \text{ MeV}, T_{ch} \sim (120-150) \text{ MeV}$
- Fixed target (BM@N) 2-4.5Å GeV, Collider (MPD) $\sqrt{s_{NN}}$ =3-11 GeV

Why proton and light nuclei at NICA?

- Protons: baryon number transfer, baryon and energy density in the reaction zone, collective effects, phase transition and CEP
- Light nuclei: weekly bound objects are copiously formed in hot and dense matter. Production rates and ratios can be sensitive to dynamical fluctuations due to PT and/or CEP; allow testing formation mechanism in models, estimating homogeneity volume and momentum-space correlations

Enhanced yield of (hyper)nuclei at NICA due to high baryon density

- A non-equilibrium phase transition indicates a gain in the final S/A due to the dynamical nature of phase transition and stochastic fluctuations during the fireball evolution
- Relative neutron density fluctuation is related to spinodal instability (PT or CEP)

Baryonic Matter at Nuclotron experiment at NICA

more about BM@N in the talk of M.Kapishin on Tue. 22/10 at 12.10

- Tracking : ST + GEMs + CSC/CSC ($\delta p / p \sim 2 \cdot 10^{-2}$)
- PID : MRPC TOF400/700 (σ_{TOF} ~ 85 /115 ps)
- Trigger and centrality: multiplicity detectors BD+SiMD

- Commissioning & data taking from 2018
- Available data sets: C + C,AI,Cu,Pb at 4.5(4.0)A GeV Ar + C,AI,Cu,Sn,Pb at 3.2A GeV Xe + CsI at 3.8A GeV

p

2

 Results on charged hadrons (π, K), protons, light nuclei, Lambda-hyperons
 JHEP 07 (2023) 174, e-Print: 2303.16243 [hep-ex]

ToF-700 data

6

10

 M^{2}/q^{2} , $(GeV/c^{2})^{2}$

BM@N results: particle pT-spectra in Ar+A at 3.2A GeV

- <u>Data set:</u> ~16[.]10⁶ Ar + C, Al, Cu, Sn, Pb at E/A = 3.2 GeV (y_{CM} = 1.08)
- <u>Centrality:</u> 0-40% and >40% by charged track multiplicity and #of_hits in the multiplicity detector
- <u>PID</u>: *p,d,t* are selected by *m*² from TOF; corrections from MC; analysis details in *JHEP 07 (2023) 174*

- mT-exponentials are used for extrapolation.
 The extrapolation: 5-30% (*p*), 10-40% (*d*) 12-45% (*t*)
- A bell-like <E_T>(y) dependence is reproduced by models;
 ~10% syst. error in *T* (<*mT*>) for *p,d* and ~20% for *t*

$$\langle E_T \rangle = \langle m_T \rangle - m = T_0 + T_0^2 / (T_0 + m)$$

BM@N results: mass dependence for $\langle m_{\tau} \rangle$ -*m* and BW fits in Ar+A at 3.2A GeV

- Midrapidity $\langle E_T \rangle$ increases with mass. This might be due to radial expansion in the reaction zone.
- BW fits (combined *p*+*d*+*t*): *T* ~ 115 MeV, <β> ~ 0.15 (0.23) for a constant (linear) velocity profile.
 Small variations of the BW fit parameters for 0-40% Ar+Al,Cu,Sn,Pb

BM@N results : Rapidity spectra of *p,d,t* in Ar+A at 3.2A GeV vs. models

- Rapidity spectra of protons: BM@N data indicate more stopping than models
- Models underestimate the yields of light nuclei. Discrepancy could be due to feed-down from excited nuclear states (*Phys. Lett. B* 809 (2020) 135746)

BM@N results: rapidity loss in Ar+A at 3.2A GeV

- Baryon rapidity loss mechanism (baryon number transfer) is crucial for understanding collision dynamics
- Testing baryon density achieved in reactions and nuclear matter properties (compressibility and EOS)

- Nuclear opacity increases slowly with the size of the reaction zone in 0-40% Ar+A (+18% gain from Ar+Al to Ar+Pb)
- </l>
 $\langle \delta y \rangle$ in Ar+A and Au+Au (STAR, QM'22) agree on proper scale
- $<\delta y >$ scales with the beam rapidity in medium-size A+A

Valence quarks

1/3 B=1/3 00 Q≠0

BM@N results: deuteron-to-proton ratio R_{dp} in Ar+A

R_{dp} is related to nucleon phase-space density and entropy-per-baryon in the source

- R_{dp} increases toward the beam rapidity in peripheral Ar+A and has a plateau in central collisions
- The midrapidity R_{dp} rises in small systems and saturates in central Ar+A

~25-30% syst. error in R_{dp}

BM@N results: Specific entropy S/A in central A+A energy dependence

 In a thermally and chemically equilibrated system, nuclear cluster abundances and entropy attained in the reaction are related. Specific entropy (entropy per baryon) S/A can be deduced from R_{dp}

 $\frac{S_N}{A} = 3.945 - \ln R_{dp} - \frac{1.25R_{dp}}{1 + R_{dp}}$ L. P. Csernai and J. I. Kapusta, Phys. Rep. 131, 4 (1986) 223-318

In addition, the pion contribution to the total entropy is estimated (*L.Landau*): $\frac{S_{\pi}}{A} = 4.1 \frac{N_{\pi}}{N_N}$ N_{π} is the number pions (BM@N data + models) and N_N is the number of nucleons

Reaction	Ar+C	Ar+Al	Ar+Cu	Ar+Sn	Ar+Pb
S/A	10.6 +/- 1.6	8.0 +/- 1.2	8.0 +/- 1.2	7.9 +/- 1.2	8.0 +/- 1.2

The entropy per baryon **S/A ~ 8.0** in central Ar+Al,Cu,Sn,Pb at BM@N (the value near midrapidity)

- S/A increases steady with collision energy
- BM@N results follow the general trend for central A+A collisions

Summary

- Heavy-ion experimental program at NICA is progressing according to plans.
 The BM@N experiment at Nuclotron/NICA has started take data
- BM@N results on *p,d,t* from Ar-nucleus at E/A = 3.2 GeV:
 - pT-spectra are measured over the forward rapidity range
 - rapidity distributions of protons are reproduced by models, *d* and *t* yields are strongly underestimated
 - average rapidity loss $<\delta y>$ increases with the size of system
 - deuteron-to-proton ratio R_{dp} saturates in central Ar-nucleus near midrapidity
 - entropy-per-baryon S/A ~ 8.0 in 0-40% Ar+A near midrapidity
- not shown (see in Spares): nucleon phase-space densities, coalescence, penalties, and O_{pdt} in Ar+A

Thank you for your attention!

Extra slides

Rapidity spectra of *p,d,t* in A+A: BM@N vs STAR-FXT

Ar+Al 0-40% data set from BM@N (projectile N_{part} = 23) and 40-80% Au+Au (projectile N_{part} = 20) are used for the comparison (assuming that the particle yields scale with N_{part})

 Though the collision geometry in Ar+Al and Au+Au is different, the yields of p, d, t agree within 20% at midrapidity

BM@N results: nucleon phase-space density in Ar+A

In an equilibrated source, spatial-averaged phase-space density < f_p > is related to the ratio of the invariant yields of d and p. < f_p > depends on the strength of stopping and on the outward flow

 $\langle f_p \rangle(\mathbf{p}) = \frac{1}{3} \left(E_d \frac{d^3 N_d}{dp_d^3} \right) / \left(E_p \frac{d^3 N_p}{dp_p^3} \right) \cdot \text{Murray and B. Holzer, Phys Rev. C 63, 054901 (2000)}$

<f> decreases exponentially with pT indicating a weak (if any) variation with the target mass in Ar+A (except Ar+C). Might be an indication of balancing of stopping power and the outward flow at BM@N

BM@N results: cluster yield ratio O_{pdt}

A peak structure in the excitation function of O_{pdt} (~ relative neutron density fluctuations) as a probe of the QCD phase diagram structure – K.J.Sun et al, Phys. Lett. B 781, 499 (2018)

 $N_p \times N_t / N_d^2$ 1.2 **Central collisions** FOPI Au+Au O STAR Au+Au BM@N Ar+A (0-40%) NA49 Pb+Pb E864 Au+Pb 0.8 0.6 Φ 0.4 BM@N prelim. 0.2 0 0 10 12 14 16 18 20 2 8 22 Collision Energy $\sqrt{s_{NN}}$ (GeV)

 $O_{pdt} = (N_p N_t) / (N_d^2)$

BM@N results from 0-40% central Ar+A follow the general trend of the excitation function for O_{dpt}

BM@N results: coalescence parameters B_A

• Coalescence parameter B_A is related to the nucleon homogeneity volume in the source

 $E_A d^3 N_A / d^3 p_A = B_A (E_p d^3 N_p / d^3 p)^Z (E_n d^3 N_n / d^3 p)_{|p=p_A/A}^{A-Z}$

BM@N results: A-dependence of cluster yields & penalty factor in Ar+A

- Cluster yields in A+A collisions follow exponential A-dependence at all energies
- The slope parameter, penalty factor p, is sensitive to the nucleon phase-space density in the source

19

