

# Estimation of the isotopic spin influence on femtoscopic correlations of identical pions in Au+Au collisions in the UrQMD model

Anna Kraeva

National Research Nuclear University MEPhl, Moscow, Russia Joint Institute for Nuclear Research, Dubna, Russia

October 25, 2024 ICPPA-2024

## **Motivation**

- The isospin dependence of the nuclear equation of state (ES) is indefinite for describing neutron-rich matter. It's necessary for understanding asymmetric nuclei.
- In last <u>preliminary</u> plots there is a difference between the CFs and radii for  $\pi^{+}\pi^{+}$  and  $\pi^{-}\pi^{-}$  due to the isospin and residual electric charge due to Coulomb interaction.
- Studies of such effects on the reaction dynamics can provide a clearer estimation of the temporal characteristics of the particle emission processes.



## **Construction two-particle correlation function (CF)**

 $C(q) = \frac{A(q)}{B(q)} \xrightarrow{A(q)} - \text{ formed using pairs, where both tracks are from the same event. It contains quantum-statistical correlations (QS)}$ 

 $\left( q 
ight)$  - formed using pairs, where QS are absent

q - relative momentum

MC generators do not contain QS correlations. Femtoscopic weight could be added as:  $1 + \cos(q\Delta r)$  where  $\Delta r$  is a relative four-coordinate of particles from a pair.

The relative pair momentum can be projected onto the Bertsch-Pratt, out-side-long system:

 $q_{long}$  - along the beam direction,

- $q_{out}^{aaa}$  along the transverse momentum of the pair,
- q<sub>side</sub> perpendicular to longitudinal and outward directions
- <u>S. Pratt. Phys. Rev. D 33 (1986) 1314</u> G. Bertsch, Phys. Rev. C 37 (1988) 1896



CF are constructed in Longitudinally Co-Moving System (LCMS), where  $p_{1,z} + p_{2,z} = 0$ 

#### Femtoscopic radii are extracted by fitting C(q) with Bowler-Sinyukov

$$C(q)=N[(1-\lambda)+\lambda K(q)(1+G(q))]$$
 , where $G(q)=\exp(-q_{out}^2R_{out}^2-q_{side}^2R_{side}^2-q_{long}^2R_{long}^2-2q_oq_lR_{ol}^2)$ 

- N normalization factor,
- K(q) Coulomb correction factor,
- $\boldsymbol{\lambda}$  correlation strength,

 $R_{side} \sim qeometrical size of the particle emission source,$  $<math>R_{out} \sim qeometrical size + particle-emitting duration$  $<math>R_{long} \sim medium lifetime,$  $<math>R_{out-long}^2 - twist of the CF in the q_{out} - q_{long} plane,$ depending on the degree of asymmetry of the rapidityacceptance w.r.t. midrapidity.

Fit using Log-likelihood method: Phys. Rev. C 66 (2002) 054906

$$\chi^2 = -2\left[A \ln\left(\frac{C(A+B)}{A(C+1)}\right) + B \ln\left(\frac{A+B}{B(C+1)}\right)\right], C = \frac{A}{B}$$

<u>Yu. Sinyukov et al. Phys. Lett. B 432 (1998) 248</u> <u>M. Bowler Phys. Lett. B 270 (1991) 69</u>



#### Fit example:

#### Influence of residual electric charge on the CFs

For the initial estimation of the residual electric charge, the charges was taken in range from 0 to 50



- The 3-body effect on the CF was added in UrQMD
- With residual charge increasing the CF width becomes larger and the radii slowly decreases for π<sup>+</sup>π<sup>+</sup>.
- The ratio of CFs before and after adding residual charge does not exceed 2%

https://arxiv.org/abs/nucl-th/0501065

Anna Kraeva, ICPPA-2024

#### Influence of residual electric charge on the CFs

For the initial estimation of the residual electric charge, the charges was taken in range from 0 to 50



- The 3-body effect on the CF was added in UrQMD
- With residual charge increasing the CF width becomes smaller and the radii slowly increases for π<sup>-</sup>π<sup>-</sup>.
- The ratio of CFs before and after adding residual charge does not exceed 2%

https://arxiv.org/abs/nucl-th/0501065

Anna Kraeva, ICPPA-2024

### Influence of initial charge on the CFs

To estimate the influence of the initial charge "proton", "neutron" and "usual" gold were used.



- The influence of the initial proton number in ion on the CF is observed
- With  $Z_{Au}$  increasing the CF width becomes smaller and the radii increases for  $\pi^+\pi^+$ .
- The ratio of CFs before and after changing Z<sub>Au</sub> does not exceed 4%

### Influence of initial charge on the CFs

To estimate the influence of the initial charge "proton", "neutron" and "usual" gold were used.



- The influence of the initial proton number in ion on the CF is observed
- With  $Z_{Au}$  increasing the CF width becomes bigger and the radii decreases for  $\pi^+\pi^+$ .
- The ratio of CFs before and after changing Z<sub>Au</sub> does not exceed 4%

#### How to correct the three-body effect?

- We have a significant difference between the CFs for pions in the STAR experiment. This difference includes the isospin effect and the third-body effect.
- Firstly, we estimate the third body effect in UrQMD.
- Correction of the CF consists of:
  - Push  $\pi^-$  outward:  $\mathbf{p}'_1 = \mathbf{p}_1 + |\Delta \mathbf{p}|$
  - Pull  $\pi^+$  back:  $\mathbf{p'}_2 = \mathbf{p}_2 |\Delta \mathbf{p}|$
  - Direction of  $|\Delta p|$  is chosen to be along particle's **p**
- S1.5-STAR Preliminary π<sup>+</sup>π<sup>+</sup> Au+Au  $\sqrt{s_{NN}} = 3 \text{ GeV}$  $\Lambda \pi^{-}\pi^{-}$  $1.4^{-}$  0.15 < k<sub>T</sub> (GeV/c) < 0.25 -Fit 1.3-0-10% 1.2 1.1 -0.15-0.1-0.05 0 0.05 0.1 0.15 -0.15-0.1-0.05 0 0.05 0.1 0.15 -0.15-0.1-0.05 0 0.05 0.1 0.15 q<sub>out</sub> (GeV/c) q<sub>side</sub> (GeV/c) q<sub>lona</sub> (GeV/c)

- For the estimation three-body effect in UrQMD we used:
  - ο |Δp| = 1, 5, 10, 15, 20 MeV/c
  - $\circ$  Electric residual charge = 10, 20, 30, 40, 50

#### $\pi\pi$ correlations with dif. $\Delta p$ and Residual charge = 10

Difference between 1D CFs with different  $|\Delta p|$  is observed



Anna Kraeva, ICPPA-2024

### **\Delta p dependence of femtoscopic radii for Residual charge = 10,** $\pi^+\pi^+$



- Colored markers radii at charge 10 for  $\Delta p_{1,2} = \{0, 1, 5, 10, 15, 20\}$  MeV/c
- Red line radius at charge 0 for  $\Delta p_{1,2} = 0 \text{ MeV/c}$
- Empty red circle is intersection point. This point means  $\Delta p_{12} = 2.61$  MeV/c for charge 10 for  $\pi^+\pi^+$

#### Using calculated $\Delta p$ for Residual charge = 10

 $\Delta p_{1,2} = 2.61 \text{ MeV/c}$  for charge 10 for  $\pi^+\pi^+ (\Delta p_{1,2} = 2.24 \text{ MeV/c} \text{ for } \pi^-\pi^-)$ was used for the calculation

 $C(q) = A(q'_{inv}, weight_{QS}) / B(q'_{inv}, 1)$ , where  $q'_{inv}$  is shifted  $q_{inv}$ 

It means for  $\pi^+$ : p'\_{1,2} = p\_{1,2} - 2.61 (MeV/c) for  $\pi^-$ : p'\_{1,2} = p\_{1,2} + 2.24 (MeV/c)

Fit range: [0, 0.25] GeV/c Deflection of the CF from 1 is observed (about 2%)

After the using  $\Delta p_{1,2} = 2.61 \text{ MeV/c}$ for  $\pi^+\pi^+$  ( $\Delta p_{1,2} = 2.24 \text{ MeV/c}$  for  $\pi^-\pi^-$ ) for the construction CFs radii for charge 10 was obtained:



#### Res.ch. dependence of $\Delta p$ for different Initial Charges for $\pi^+\pi^+$ , $\pi^-\pi^-$



**UrQMD** Au+Au  $\sqrt{s_{NN}} = 3 \text{ GeV}$   $0.15 < k_T < 0.25 \text{ (GeV/c)}$  0-10%  $\bigtriangledown Z_{1,2} = 0$   $\bigtriangledown Z_{1,2} = 0$   $\bigcirc Z_{1,2} = 79$   $\bigcirc Z_{1,2} = 79$   $\bigsqcup Z_{1,2} = 197$   $\bigsqcup Z_{1,2} = 197$  $\smile \text{Fit}$ 

- $\Delta p$  for  $\pi^+\pi^+$  is more than for  $\pi^-\pi^-$
- for  $\pi^{\dagger}\pi^{\dagger}$ :  $\Delta p$  for neutron Au is more than for proton Au
- for  $\pi^-\pi^-$ :  $\Delta p$  for proton Au is more than for neutron Au

## Table of $\Delta p_{\text{Res.ch.}}$ for different Initial and Residual charges

|                               |                                          | Δp <sub>Res.ch.</sub> (MeV/c) |      |      |       |       |
|-------------------------------|------------------------------------------|-------------------------------|------|------|-------|-------|
|                               | Z <sub>1,2</sub> / <mark>Res. Ch.</mark> | 10                            | 20   | 30   | 40    | 50    |
| π <sup>+</sup> π <sup>+</sup> | 0                                        | 2.80                          | 5.23 | 7.81 | 10.55 | 13.55 |
|                               | 79                                       | 2.61                          | 4.66 | 6.82 | 9.18  | 11.94 |
|                               | 197                                      | 2.23                          | 4.18 | 6.17 | 8.33  | 10.75 |
| ππ                            | 0                                        | 2.24                          | 3.96 | 5.64 | 7.26  | 8.91  |
|                               | 79                                       | 2.24                          | 4.02 | 5.75 | 7.43  | 9.14  |
|                               | 197                                      | 2.38                          | 4.34 | 6.16 | 7.91  | 9.53  |

## Conclusion

- 1D correlation functions were constructed for different **Residual Charges** and **ΙΔpl shifts** 
  - $\circ$  CFs are different for several  $|\Delta p|$  for each Residual Charge
- 1D correlation functions were constructed for different Δp shifts, Residual and **Initial Charges** 
  - CFs are different for several Initial Charge
- |Δp| were calculated for each electric residual charge, electric residual and initial charge
  - $\circ$  1D CFs was corrected

To do:

- Cross-check the developed approach with the toy model
- Corrections for 3D CFs in UrQMD
- Corrections for experimental data