

Área de Física Teórica

Magnetic and vortical impacts on the effective QCD phase diagram

Luis Alberto Hernández Rosas Universidad Autónoma Metropolitana

Eur.Phys.J.A 57 (2021) 7 ArXiv:2410.17874

The 7th International Conference on Particle Physics and Astrophysics Moscow, Russia, October 25th 2024

CONTENT

PHYSICS MOTIVATION

 LSMq AND THE EFFECTIVE POTENTIAL PHASE DIAGRAM, CEP AND FINAL REMARKS

HIC

ANGULAR VELOCITY

Initial angular velocity ω for Au + Au collisions at impact parameters b= 5, 8, 10 fm as functions of collision energy (UrQMD). Phys. Rev. D **102** (2020), 056019

Time evolution of angular velocity at b=7 fm and four different energies (PACIAE). Phys.Rev.C **104** (2021) 5, 054903

Initial angular velocity at mid rapidity as a function of the collision energy for impact parameters b = 5, 8, and 10 fm (UrQMD). Phys.Rev.C **101** (2020) 6, 064908

Angular velocity at fixed τ = 0.4 fm and η = 0 as function of collision energy (HIJING). Phys. Rev. C **93** (2016), 064907

MAGNETIC FIELDS

R. Snellings, J. Phys. 13, (2011) 055008

D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227 (2008)

V. Voronyuk et al., Phys. Rev. C 83, 054911 (2011)

V. Skokov, A. Y. Illarionov and V. Toneev, Int. J. Mod. Phys. A **24**, 5925 (2009)

HICs

1.

2.

3.

4.

5.

7.

Phase transition Quark-Gluon Plasma → Chiral Symmetry

Non-central collisions Finite Impact Parameter b

Angular velocity Maximum value ~0.1 fm⁻¹ (~20 MeV)

Magnetic Fields Short pulse with maximum high ~ $(m_{\pi})^2$

Collision Energy Effects more important at low energies

6. Baryon Chemical Potential Region of maximum baryon density (MPD-NICA)

Effective models Low energies of QCD

QCD phase diagram

Temperature

J.Phys.Conf.Ser. 503 (2014) 012009

Temperature

QCD phase diagram

Linear Sigma model coupled to quarks

Effective theory which is usefull to emulate the low energy regime of Quantum Chromodynamics. It exhibits a symmetry spontaneously broken.

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu}\sigma)^{2} + \frac{1}{2} (\partial_{\mu}\vec{\pi})^{2} + \frac{a^{2}}{2} (\sigma^{2} + \vec{\pi}) - \frac{\lambda}{4} (\sigma^{2} + \vec{\pi}^{2})^{2} + i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - ig\bar{\psi}\gamma^{5}\vec{\tau}.\vec{\pi}\psi - g\bar{\psi}\psi\sigma$$

letting the sigma-field to develop a vacuum expectation value v, we have

$$V^{tree}=-rac{a^2}{2} v^2+rac{\lambda}{4} v^4$$

$$m_{\sigma}^2 = 3\lambda v^2 - a^2$$
 , $m_0^2 = \lambda v^2 - a^2$, $m_f = gv$

$$a^2,\lambda,g$$

CHIRAL SYMMETRY RESTORATION

0.25

64

0.30

EFFECTIVE POTENTIAL

$$V^{\text{eff}} = V^{\text{tree}} + V_b^1 + V_f^1 + V^{\text{rings}}$$

$$V_b^1 = -\frac{i}{2} \int \frac{d^4k}{(2\pi)^4} \ln(D_b^{-1}(k)) , \quad V_f^1 = iN_c \int \frac{d^4k}{(2\pi)^4} \text{Tr}[\ln(S_f^{-1}(k))]$$

$$V^{\text{ring}} = \frac{T}{2} \sum_{n=-\infty}^{\infty} \int \frac{d^3k}{(2\pi)^3} \ln(1 + \Pi D(\omega_n, \Omega, \vec{k})),$$

.

PROPAGATORS

EFFECTIVE POTENTIAL Ω

$$\begin{split} \mathcal{V}^{\text{eff}} &= -\frac{a^2}{2}v^2 + \frac{\lambda}{4}v^4 + \sum_{b=\sigma,\vec{\pi}} \left\{ -\frac{m_b^4}{64\pi^2} \left[\ln\left(\frac{\mu^2}{16\pi^2 T^2}\right) + 2\gamma_E \right] - \frac{\pi^2 T^4}{90} + \frac{T^2}{24} \left(m_b^2 - 2\Omega^2\right) \\ &- \frac{T \left(\Pi + m_b^2 - \Omega^2\right)^{3/2}}{12\pi} - \frac{\Omega^2}{48\pi^2} \left(3m_b^2 - \Omega^2\right) \right\} \\ &+ N_f N_c \left\{ \frac{m_f^4}{16\pi^2} \left[\ln\left(\frac{\mu^2}{\pi^2 T^2}\right) + 2\gamma_E - \frac{3}{4} \right] - \frac{7T^4 \pi^2}{180} \\ &- \frac{T^2}{12} \left(\left(\mu_q + \frac{\Omega}{2}\right)^2 + \left(\mu_q - \frac{\Omega}{2}\right)^2 \right) \\ &- \frac{T^2 m_f^2}{4\pi^2} \left(\text{Li}_2 \left(-e^{\frac{\mu + \Omega}{2}}\right) + \text{Li}_2 \left(-e^{\frac{\mu - \Omega}{2}}\right) \\ &+ \text{Li}_2 \left(-e^{-\frac{\mu + \Omega}{2}}\right) + \text{Li}_2 \left(-e^{-\frac{\mu - \Omega}{2}}\right) \right) \\ &- \frac{\left(\mu + \frac{\Omega}{2}\right)^4 + \left(\mu - \frac{\Omega}{2}\right)^4}{24\pi^2} \right\}. \end{split}$$

- Imaginary time formalism for TFT.
- Finite T, μ_q and Ω
 High T approximation.
- Ring diagramas \rightarrow Screening effects.

$$\begin{split} \Pi &= \frac{\lambda T^2}{2} - \frac{N_f N_c T^2 g^2}{2\pi^2} \left(\text{Li}_2 \left(-e^{\frac{\mu + \frac{\Omega}{2}}{T}} \right) + \text{Li}_2 \left(-e^{\frac{\mu - \frac{\Omega}{2}}{T}} \right) \\ &+ \text{Li}_2 \left(-e^{-\frac{\mu + \frac{\Omega}{2}}{T}} \right) + \text{Li}_2 \left(-e^{-\frac{\mu - \frac{\Omega}{2}}{T}} \right) \right). \end{split}$$

EFFECTIVE POTENTIAL eB

$$\begin{split} \chi^{(eff)} &= -\frac{a^2}{2} \left\{ 1 + \frac{3a^2}{8\pi^2} \left[\lambda \ln \left(\frac{2a^2}{\tilde{\mu}^2} \right) - 8\frac{g^4}{\lambda} + 2\lambda \right] \right\} v^2 \\ &+ \frac{\lambda}{4} \left\{ 1 + \frac{3}{4\pi^2} \left[8g^4 \ln \left(\frac{g^2a^2}{\lambda \tilde{\mu}^2} \right) - 3\lambda^2 \ln \left(\frac{2a^2}{\tilde{\mu}^2} \right) \right] \right\} v^4 \\ &+ \sum_{b=\pi^{\pm},\pi^0,\sigma} \left\{ -\frac{T^4\pi^2}{90} + \frac{T^2m_b^2}{24} - \frac{T(m_b^2 + \Pi_b)^{3/2}}{12\pi} - \frac{m_b^4}{64\pi^2} \left[\ln \left(\frac{\tilde{\mu}^2}{(4\pi T)^2} \right) + 2\gamma_E \right] \right\} \\ &- \frac{|q_b B|^2}{24\pi^2} \sum_{b=\pi^{\pm}} \left\{ \frac{T\pi}{2(m_b^2 + \Pi_b)^{1/2}} + \frac{1}{4} \ln \left(\frac{\tilde{\mu}^2}{(4\pi T)^2} \right) + \frac{1}{2}\gamma_E \\ &- \frac{1}{4}\zeta(3) \left(\frac{m_b^2}{(2\pi T)^2} \right) + \frac{3}{16}\zeta(5) \left(\frac{m_b^4}{(2\pi T)^4} \right) \right\} \\ &+ N_c N_f \left\{ \frac{m_f^4}{16\pi^2} \left[\ln \left(\frac{\tilde{\mu}^2}{T^2} \right) - \psi^0 \left(\frac{1}{2} + \frac{i\mu}{2\pi T} \right) - \psi^0 \left(\frac{1}{2} - \frac{i\mu}{2\pi T} \right) \right. \\ &+ \psi^0 \left(\frac{3}{2} \right) - 2 \left(1 + \ln(2\pi) \right) + \gamma_E \right] \\ &- \frac{m_f^2 T^2}{2\pi^2} \left[\text{Li}_2 \left(-e^{-\frac{\mu}{T}} \right) + \text{Li}_2 \left(-e^{\frac{\mu}{T}} \right) \right] + \frac{T^4}{\pi^2} \left[\text{Li}_4 \left(-e^{-\frac{\mu}{T}} \right) + \text{Li}_4 \left(-e^{\frac{\mu}{T}} \right) \right] \\ &+ \frac{|q_f B|^2}{12\pi^2} \left(\frac{1}{2} \ln \left(\frac{\tilde{\mu}^2}{4\pi^2 T^2} \right) + \frac{1}{2} \psi^0 \left(\frac{1}{2} + \frac{i\mu}{2\pi T} \right) + \frac{1}{2} \psi^0 \left(\frac{1}{2} - \frac{i\mu}{2\pi T} \right) \right] \right\} \right\}, \end{split}$$

- Imaginary time formalism for TFT.
- Finite T, μ_{q} and eB.
- High T approximation.
- Weak eB field approximation.
- Ring diagramas → Screening effects.

$$\Pi_{b} = \lambda \frac{T^{2}}{2} - N_{f} N_{c} g^{2} \frac{T^{2}}{\pi^{2}} \left[\operatorname{Li}_{2} \left(-e^{-\frac{\mu}{T}} \right) + \operatorname{Li}_{2} \left(-e^{\frac{\mu}{T}} \right) \right]$$

PHASE DIAGRAM Ω

- The T_c decreases as the Ω increases.
- Larger Ω moves the CEP to lower μ_q and higher T.
- The Ω not only modifies the conditions under which the phase transition occurs, but also the nature of the transition

PHASE DIAGRAM eB

- The T_c decreases as the eB increases.
- Larger eB moves the CEP to lower µ_q and higher T.
- The eB not only modifies the conditions under which the phase transition occurs, but also the nature of the transition

PHASE DIAGRAMS

a=148.7 MeV, λ=1.4 and g=0.88

a=133.5 MeV, λ=1.6 and g=0.79

SUMMARY

- **Ω** and eB promote the chiral symmetry restoration.
- Significant changes in the position of the CEP as a function of Ω or eB
- Computation of the low T approximation
- Enough equations to fix the free parameters
- Put together **Ω** and eB

Thanks for your attention!

lhernandez.rosas@izt.uam.mx
luis.hr@xanum.uam.mx

APCP

BARYON NUMBER FLUCTUATION

Conserved Charges: Net Baryon Number (B), Net Charge (Q), Net Strangeness (S)

Measured multiplicity N, $\langle \delta N \rangle = N - \langle N \rangle$ mean: $M = \langle N \rangle = C_1$ variance: $\sigma^2 = \langle (\delta N)^2 \rangle = C_2$ skewness: $S = \langle (\delta N)^3 \rangle / \sigma^3 = C_3 / C_2^{3/2}$ kurtosis: $\kappa = \langle (\delta N)^4 \rangle / \sigma^4 - 3 = C_4 / C_2^2$ Moments, cumulants and susceptibilities: 2^{nd} order: $\sigma^2 / M \equiv C_2 / C_1 = \chi_2 / \chi_1$ 3^{rd} order: $S\sigma \equiv C_3 / C_2 = \chi_3 / \chi_2$ 4^{th} order: $\kappa \sigma^2 \equiv C_4 / C_2 = \chi_4 / \chi_2$

A. Pandav (STAR collaboration), plenary talk at CPOD 2024, https:// conferences.lbl.gov/event/1376/contributions/8772/

BARYON NUMBER FLUCTUATION

A. Pandav (STAR collaboration), plenary talk at CPOD 2024, https:// conferences.lbl.gov/event/1376/contributions/8772/

SUMMARY 2.0

• As the energy approaches the CEP position, the fourth moment exhibits a sharp increase, suggesting that the CEP location can be identified by this abrupt rise. This behavior is also influenced by vorticity, as higher values of Ω shift the CEP to higher collision energies.