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Introduction C@QEPI\I

m The production of vector boson pairs (VV, with V.= W/Z/~) provides an opportunity to perform precision
studies of the electroweak sector of the Standard Model (SM), as well as the search for new physics beyond it.

m In the SM, V'V may be produced at lowest order via quark-antiquark annihilation, as well as through
gluon-gluon fusion via a quark loop.

m To higher order, the V'V can be also produced via the vector boson scattering (VBS) process, which is crucial
for probing the mechanism of electroweak symmetry breaking (EWSB) in the SM.

m VBS processes are studied by measuring the electroweak production of V'V jj, with the corresponding QCD
production of the final state V'V jj being the dominant irreducible background.
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ZZjj — Uvvjj @;1 2

® Among all processes related to vector-boson scattering, the electroweak production of two jets
and a Z-boson pair is a rare and important one.

m VBS ZZjj production is uniquely sensitive to the possible anomalous interaction between four
Z bosons.

m This is forbidden at tree-level in the SM and the study of EW ZZjj production is therefore a
direct test of an important prediction of the electroweak theory.

m ZZ — (~{Tvi has a higher branching ratio than ZZ — ¢=¢+t¢'~¢'*, but has a higher
background contamination.

m Smaller cross section precision, better sensitivity for BSM processes at extreme values of Z boson
pr.

D. Zubov NRNU MEPhI 3/14



Typical VBS topology

m Tagging jets:

® Invariant mass — Mj;
m Rapidity difference — AYj;
C | yv_y(h)ﬂ!(h)
m Centralit = |2
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Kinematics of the third jet

Theoretical works predicted the suppression of
the third jet in the central region of the detector
for VBS/VBF processes compared to QCD.

[Del Duca, Frizzo, Maltoni, JHEP 05 (2004) 064]

m QCD events have higher effective scale and
thus produce harder radiation than EWK.

Because of the cross section difference between
the QCD and EWK processes of more than three
orders of magnitude, as well as hadronisation and
detector effects, direct constraints on such
variables are of little effect.
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Application of machine learning algorithms @
MEPRI

The use of machine learning (ML) algorithms can improve the separation of signal events from background
in cases of:

m Multiparticle final state

m The distributions of potential-separating variables overlap significantly for signal and background

This study compared the performance of ML algorithms with and without the inclusion of third jet
kinematic variables.

m When training an algorithm incorporating third jet variables, the dataset was split into two categories
- ]\/vjets:2 and ]Vjets >3

Decision trees with gradient boosting (BDTG) based on TMVA were used as a classifier.
Signal significance was used as a metric for the final evaluation of signal-background separation:

Z=\/2x[(S+B)xIn(1+(S/B)) - 5]
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Dataset used for the study @
MEPRI

Process: pp — Z(— ) Z(— vv)jj

Data:
m MadGraph + Pythia8 + Delphes (with ATLAS card)
m /s =13 TeV
m Normalized for L = 140 fb*

Final state:

m >2 hadron jets, pt>30 GeV

m Same flavour oposite charge lepton pair (eTe™ or ut ™), leading pr>30 GeV, subleading
p1>20 GeV

m Ess > 70 GeV
m Veto on any additional lepton
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Learning Results
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Distributions of training and test samples for signal and background on the classifier response
variable.

The results of the second and third classifier were combined and compared with the results of the

first classifier.
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Learning Results
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Cross- sectional and luminosity normalised distributions of signal and background on the classifier response.
And also the d di of signal signifi on the lower threshold on the classifier response.

After combining the results of the second and third classifiers:
m Total Z = 9.96+0.04; Total Signal = 56.8+0.5; Total Background = 18.14+0.3
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Conclusion C@QEPI\I

m In this study we have investigated the possibility of enhancing the separation of EWK and
QCD processes of Z boson pair production.
The use of third jet information in the machine learning algorithm increased the signalling

significance.
m It is possible to use the described approach when studying other VBS/VBF processes.
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Back up slides @
MEPRKI
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Decision trees with gradient boosting (BDTG) C@
MEPhI

Decision tree

m A decision tree is a binary tree : a sequence of cuts paving the phase-space ‘"’kogtj
. . ‘node
of the input variables >
xi>cl xi<cl)
m Repeated yes/no decisions on each variables are taken for an event until a P >
stop criterion is fulfilled C) o,
. - . . . . /N N
m Trained to maximize the purity of signal nodes (or the impurity of x> c2 XJ<< ;m xn<i
background nodes) A A
{ S / \ ,‘ ‘~ S ,“
Advantages: — Dad —
xk > c4| xk < c4
m Decision trees are independent of monotonous variable transformations P
. . . (B) (s
m Weak variables are ignored and do not deteriorate performance <@ O

Disadvantages:
m Decision trees are extremely sensitive to the training samples, therefore to overtraining

m Slightly different training samples can lead to radically different DT
Boosting
m Sequentially apply the DT algorithm to reweighted (boosted) versions of the training data
m Each model in the series trains upon its predecessor's mistakes, trying to correct them
m Works very well on non-optimal decision tree (small number of nodes)

m There are different boosting algorithms and in our work we use the gradient descent
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Studied variables
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3rd jet information variables:
AY (j133)
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3rd jet variables distributions
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