Polarization measurement of Λ - and $\bar{\Lambda}$ -hyperons formed by the interaction of K^- -, π^- -mesons with nuclei at the SPASCHARM facility at the U-70 accelerator

> V. V. Abramov, <u>V. V. Moiseev</u> on behalf of the SPASCHARM collaboration

NRC «Kurchatov Institute» - IHEP Protvino, Russia

ICPPA-2024

October 23, 2024

Introduction

The transverse polarization in the inclusive production of Λ -hyperons was discovered in 1976 in the interaction of unpolarized 300 GeV protons with a fixed beryllium target [1]. Contrary to expectations, the polarization turned out to be significant.

The polarization of antihyperons has been studied to a much lesser extent, due to smaller production cross sections and a higher background level. The transverse polarization of inclusive $\bar{\Lambda}$ -hyperon production has been measured in only one experiment on a copper target at $\sqrt{s} = 20.8$ GeV [2].

A number of phenomenological models have been developed that explain individual details of polarization data [3–8].

$\Lambda/\bar{\Lambda}$ -hyperon decay

Figure: Scheme of reaction and decay kinematics (right), $\vec{n} = \frac{\vec{p}_{beam} \times \vec{p}_{\Lambda/\bar{\Lambda}}}{|\vec{p}_{beam} \times \vec{p}_{\Lambda/\bar{\Lambda}}|}$ (scattering plane normal vector) [9].

In the decay of the $\Lambda/\bar{\Lambda}$ -hyperon with transverse polarization Pinto π^-/π^+ -meson and p/\bar{p} , the probability of p/\bar{p} emission at the angle Θ to the hyperon polarization vector \vec{P} has the form $\frac{dN}{d\Omega} = \frac{1+\vec{P}\cdot\vec{e}_P}{4\pi} = \frac{1+\alpha_{\Lambda/\bar{\Lambda}}P\cos\Theta}{4\pi}$, where \vec{e}_P is the unit vector in the p/\bar{p} motion direction in the $\Lambda/\bar{\Lambda}$ rest frame, vector \vec{P} is directed along \vec{n} ($\alpha_{\Lambda} = 0.732 \pm 0.014$, $\alpha_{\bar{\Lambda}} = -\alpha_{\Lambda}$ [10]).

ICPPA-2024

V. Moiseev, $\Lambda/\bar{\Lambda}$ polarization measurement

Experimental setup SPASCHARM

Negatively charged particles $\pi^- (\approx 98.0 \text{ \%})$, $K^- (\approx 1.75 \text{ \%})$, $\bar{p} (\approx 0.15 \text{ \%})$ are extracted into the beam channel (26.5 GeV/c). Beam tracks by hodoscopes H1-4, identification by threshold Cherenkov counters C1-3. Target magnet (0 T·m), hollow cryostat of a polarized target (PT), external nuclear targets - at its output. Tracking system: PC1-3 - proportional chambers, DTS0-5 - drift tube stations, spectrometer magnet with $\int Bdl \sim 0.7 \text{ T·m}.$

Sessions 2021-2022

Polarization measurements were performed using data from the 2021 and 2022 sessions. In the 2021 session, the main trigger - $S1 \cdot S2 \cdot S3 \cdot \overline{BK}$, in 2022 - $S1 \cdot S2 \cdot S3 \cdot \overline{BK} \cdot \overline{C1} \cdot \overline{C2}$ (enrichment of K^- -mesons by suppressing π^-). Nuclear targets were used: *C*, *AI*, *Cu*, *Si*, *Sn*, *Pb*, *W* ($\langle A \rangle = 62$), also pentanol ($C_5H_{12}O$), its carbon equivalent and the "empty" target.

Total trigger number in two sessions on all targets - 1.2×10^9 .

 2×10^9 minimum bias events were generated in Pythia, all generated particles were passed through the setup using Geant. The final number of reconstructed Λ - and $\bar{\Lambda}$ -hyperons is an order of magnitude greater than their number in the real data, which makes their contribution to the statistical error of the measured polarization negligibly small.

$\Lambda/\bar{\Lambda}$ -hyperon selection criteria I

- One track in beam hodoscopes.
- Beam particle type determination (π^-, K^-, \bar{p}) .
- Two or more tracks in the spectrometer.
- ► Distance between two secondary tracks with opposite charges, which are decay products of the $\Lambda/\bar{\Lambda}$ -hyperon, < 0.4 cm.
- ► Distance between the beam track and the "trajectory" of Λ/Λ-hyperon candidate (pair p/p̄ + π⁻/π⁺) < 0.4 cm.</p>
- Distance along Z coordinate between primary and secondary vertex > 18 cm. This is the main criterion that suppresses the combinatorial background.

$\Lambda/\bar{\Lambda}\text{-hyperon}$ selection criteria II

- ▶ Distance from primary vertex to target axis < 1.6 cm.
- The coordinate of the secondary vertex is within 35 110 cm from the origin (polarized target center).
- ▶ Using the Armenteros-Podolyanski plot [11], pairs with $\alpha_{AP} > 0$ for Λ and $\alpha_{AP} < 0$ for $\bar{\Lambda}$ were selected, where α_{AP} is the asymmetry between the longitudinal momenta of positively and negatively charged particles (decay products) relative to the direction of the $\Lambda/\bar{\Lambda}$ -hyperon.
- By assigning the masses of π[±]-mesons to the particles of the selected pair, pairs with mass K_S⁰ are excluded (0.468 0.525 GeV/c²).

Signal and background extraction of the Λ -hyperon

Figure: A-hyperon invariant mass distributions for the K^- -beam (left: $S = 8318 \pm 94$, $S/B = 13.28 \pm 0.55$) and π^- -beam (right: $S = 43800 \pm 242$, $S/B = 2.90 \pm 0.03$) in sessions 2021-2022.

The "signal" distribution is approximated by two Gaussian distributions (two variances), "background" by function $N(M - M_{p+\pi})^k exp[-b(M - M_{p+\pi})]$. Pairs in the mass range of 1.105 - 1.125 GeV/ c^2 are selected as a signal (*S*), and pairs in the mass ranges of 1.077 - 1.1 and 1.14 - 1.16 GeV/ c^2 - as a background (*B*).

Signal and background extraction of the $\bar{\Lambda}$ -hyperon

Figure: $\bar{\Lambda}$ -hyperon invariant mass distribution for the π^- -beam in session 2021 at 0.14 < x_F < 0.25 ($S = 3163 \pm 78$, $S/B = 1.04 \pm 0.03$).

For S pairs are selected in the mass range of 1.105 - 1.125 GeV/ c^2 , B - in the mass ranges of 1.090 - 1.1 and 1.14 - 1.15 GeV/ c^2 .

Λ -hyperons polarization in the K^- - and π^- -beams

Figure: Graphs of $P_N(x_F)$ (left) and $P_N(p_T)$ (right) in reactions $K^-A \to \Lambda X$ and $\pi^-A \to \Lambda X$.

The P_N value in the π^- -beam does not exceed several percent, with the exception of the region $p_T > 1 \text{ GeV}/c - (23 \pm 9)\%$. For the K^- beam in the region $p_T > 0.3 \text{ GeV}/c$ the average polarization $(23.6 \pm 3.6)\%$, which is 6.5 sigma effect.

ICPPA-2024

$\bar{\Lambda}$ -hyperons polarization in the π^- -beam

Figure: Graphs of $P_N(x_F)$ (left) and $P_N(p_T)$ (right) in the reaction $\pi^- A \to \bar{\Lambda} X$ compared to $\pi^- A \to \Lambda X$.

The P_N value of $\bar{\Lambda}$ -hyperons in the π^- -beam is small, negative and almost does not change, for Λ - positive and increases monotonically (p_T) .

ICPPA-2024

Estimation of the systematic polarization error $\Lambda/\bar{\Lambda}$

To estimate the systematic error in polarization measuring of $\Lambda/\bar{\Lambda}$ -hyperons in the π^- -beam, the "polarization" of spinless (pseudoscalar) K_S^0 -mesons was determined.

The absolute value of the "polarization" of K_S^0 -mesons does not exceed 0.036, which is lower than the statistical error of Λ and $\overline{\Lambda}$ polarization.

Summary

The first results on the polarization of inclusively produced $\Lambda/\bar{\Lambda}$ -hyperons in the K^- - and π^- -beams with a momentum 26.5 GeV/*c* were obtained at the SPASCHARM facility at the U-70 accelerator complex in Protvino.

The π^- -beam data indicate a negligible transverse polarization of $\Lambda/\bar{\Lambda}$ -hyperons, except of the region $p_T > 1$ GeV/c, where the measured Λ -hyperons polarization reaches (23 ± 9) %. Polarization of Λ -hyperons in the K^- -beam (which contains valence s-quarks) has a noticeable positive value, in the region $p_T > 0.3$ GeV/c the average P_N (23.6 ± 3.6) %, which is 6.5 sigma effect, in the region $p_T > 1$ GeV/c the P_N is (66 ± 18) %.

The research was funded by the Russian Science Foundation (project No. 22-12-00164).

References

- G. Bunce et al. In: *Phys. Rev. Lett.* 36 (1976), p. 1113. DOI: 10.1103/PhysRevLett.36.1113.
- [2] S. Barlag et al. In: Phys. Lett. B 325 (1994), p. 531. DOI: 10.1016/0370-2693(94)90052-3.
- B. Andersson. In: J. Phys. G 17 (1991), p. 1507. DOI: 10.1088/0954-3899/17/10/005.
- [4] T. A. DeGrand and H. I. Miettinen. In: Phys. Rev. D 31 (1985), p. 661. DOI: 10.1103/PhysRevD.31.661.
- [5] D. Sivers. In: Phys. Rev. D 41 (1990), p. 83. DOI: 10.1103/PhysRevD.41.83.
- [6] J. Collins. In: Nucl. Phys. B 396 (1993), p. 161. DOI: 10.1016/0550-3213(93)90262-N.
- [7] M.G. Ryskin. In: Yad. Fiz. 48 (1988), p. 1114.
- [8] V.V. Abramov. In: Yad. Fiz. 72 (2009), p. 1933.
- [9] A. D. Panagiotou. In: Int. J. Mod. Phys. A 5 (1990), p. 1197. DOI: 10.1142/S0217751X90000568.
- [10] P. A. Zyla et al. "Review of Particle Physics". In: PTEP 2020.8 (2020), p. 083C01. DOI: 10.1093/ptep/ptaa104.
- [11] J. Podolanski and R. Armenteros. In: *Phil. Mag.* 45.360 (1954), p. 13. DOI: 10.1080/14786440108520416.

ICPPA-2024

Armenteros-Podolyanski plot

Figure: Armenteros-Podolyanski plot of $p + \pi^-$ pairs over Q_t and α_{AP} for the π^- -beam in the 2021 session.

Signal and background extraction of the $\Lambda/\bar{\Lambda}\mbox{-hyperon}$ for Monte Carlo events

Figure: $\bar{\Lambda}$ -hyperon invariant mass distribution for the π^- beam in the Monte Carlo simulation ($S = 87007 \pm 381$, $S/B = 1.50 \pm 0.01$).

The same S and B extraction conditions of $\Lambda/\overline{\Lambda}$ -hyperon were used for Monte Carlo events.

Polarization determination of $\Lambda/\bar{\Lambda}$ -hyperons

The uncorrected distribution of p/\bar{p} over $\cos\Theta$ in the $\Lambda/\bar{\Lambda}$ rest frame has the form $\frac{dN}{d(\cos\Theta)} = 0.5 \cdot A(\cos\Theta) \cdot (1 + \alpha_{\Lambda/\bar{\Lambda}} P_N \cos\Theta)$, where $A(\cos\Theta)$ is the reconstruction efficiency ("acceptance").

- Calculation of the coefficient W = N_S/N_B/(1 + S/B) (where N_S and N_B - entries number of S and B histograms), by which the B histogram must be multiplied for its correct subtraction from S to obtain the distribution over cos⊖ for "pure" Λ/Λ-hyperons.
- ► Dividing the histograms of real data by the Monte Carlo data yields an efficiency-corrected distribution over *cos*⊖, which is used to find the desired *P_N* by approximation.

Figure: Distributions over $cos\Theta p$ for S (top) and B (bottom).

ICPPA-2024

V. Moiseev, $\Lambda/\bar{\Lambda}$ polarization measurement

3 / 6

A-hyperons polarization on K^- - and π^- -beams

Figure: Distribution over $cos\Theta$ in the reaction $\pi^-A \to \Lambda X$ (left) and in the reaction $K^-A \to \Lambda X$ (right) in sessions 2021-2022. Top - before background subtraction, bottom - background subtracted. Approximation by the function $N(1 + \alpha_{\Lambda}P_N cos\Theta)$.

$\bar{\Lambda}$ -hyperons polarization on π^- -beam

Figure: Distribution over $\cos\Theta$ in the reaction $\pi^-A \rightarrow \bar{\Lambda}X$ in session 2021 at 0.14 $< x_F < 0.25$. Approximation by the function $N(1 + \alpha_{\Lambda}P_N\cos\Theta)$.

K_S^0 -meson "polarization" on π^- -beam

Figure: Distribution over $cos\Theta$ in the reaction $\pi^-A \rightarrow K_S^0 X$ in session 2021 at $0.61 < p_T < 1.00$ GeV/c.