

Searches for new physics in rare decays of heavy flavors at CMS

Sergey Polikarpov on behalf of the CMS collaboration

ICPPA-2024

Moscow

24 October 2024

Outline

- > Introduction, $b \rightarrow sll$
- > Angular observables in $b \rightarrow sll$ transitions
- Searches for LFUV in heavy-flavor decays

CMS experiment

$b \rightarrow sll$ as New Physics probes

 $> b \rightarrow sll$ transitions are precisely predicted by Standard Model

- Processes are rare (loop level, CKM-suppressed)

 new interactions can be major contribution
- New interactions can have different symmetries from the SM
- ➢ NP can modify parameters of angular distributions observed in FCNC decays B→h l⁺ l⁻

Angular analyses of $b \rightarrow sll$ transitions > Many recent results measuring angular parameters and differential branching fractions q=m(ll)

 B^0 → $K^{*0}\mu^+\mu^-$, Run-1+2016, ~4500 signal

LHCb-PAPER-2020-002, Phys.Rev.Lett.125(2020)011802

Data set and $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ selection

Run 2 dataset (2016-2018), corresponding to 140 fb^{-1}

Trigger requires 2 muons + a track

 $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow \psi(2S) K^{*0}$ decays with the same final-state particles $K^{\pm}\pi^{\mp}\mu^{+}\mu^{-}$

are used for the control and validation

BDT to distinguish signal from background

- trained on signal MC and background from data sidebands
- different training per year of data taking, k-folding to avoid overtraining
- input features: decay-vertex quality and displacement, isolation, mass of Kπ system
- chosen working point optimises signal significance

 $B^0 \rightarrow J/\psi K^*$ and $B^0 \rightarrow \psi(2S)K^*$ leak in the nearby signal region, mainly due to unreconstructed photon

combined cut on m(Kπµµ) and q²

Specific backgrounds

- $B^+ \rightarrow K^+ \mu \mu$ (plus combinatorial track)
 - additional veto on mass of two h+µµ systems

В_s→ф(→КК) µµ

- veto at preselection level on KK mass hypothesis
- residual contribution negligible wrt signal (<1%)

B⁺→**K**⁺ ψ (**2S**), with ψ (2S)→J/ ψ ππ (a π track is lost)

- only affects J/ψ control region
- combination of cuts on intermediate masses

 $B_s \rightarrow KK\mu\mu$ contribution (4%) treated as combinatorial bkg

Negligible contribution from $B_s{\to}K^*\mu\mu$ (< 1%), no evidence of $\Lambda_b{\to}pK\mu^+\mu^-$

4D UML simultaneous fit in 6 q² bins

3 angles + mass

3 data-taking years

Fit to $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ sample additionally accounts for:

- the possibility that K and π are swapped
- Efficiency as a function of angular variables
- Background angular shape (from sidebands)
- Physical boundary in the angular observables space

CMS-PAS-BPH-21-002, arXiv soon!

q=m(ll)

$B^0 \rightarrow K^{*0} \mu^+ \mu^- Results$

6 8 10 12 14 16 18

 q^2 (GeV²)

0 2 4

0

0 2

 q^2 (GeV²)

6 8

4

10 12 14 16

18

 q^2 (GeV²)

Lepton Flavour Universality Violation

- SM has identical couplings of charged leptons to W and Z bosons
 → similar behavior of e,µ,τ (some differences due to different mass)
- Observation of a significant LFUV would immediately point to New Physics contribution
- \succ LFU tests in *b* \rightarrow *sll* are theoretically-clean observables

$$R(\mathbf{K})(q^{2})[q_{\min}^{2}, q_{\max}^{2}] = \frac{\mathcal{B}(\mathbf{B}^{+} \to \mathbf{K}^{+}\mu^{+}\mu^{-})[q_{\min}^{2}, q_{\max}^{2}]}{\mathcal{B}(\mathbf{B}^{+} \to \mathbf{K}^{+}\mathbf{e}^{+}\mathbf{e}^{-})[q_{\min}^{2}, q_{\max}^{2}]} \qquad q=m(ll)$$

$$\stackrel{P^{+}}{\underset{N}{\overset{W^{+}}}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}}{\overset{W^{+$$

10

LFUV searches: previous results

(*) Measurements from Belle not shown (larger statistical uncertainties)

A set of previous results (with precision dominated by LHCb measurements) have indicated a discrepancy from SM prediction in R_x ratios (until 2023)

All the ratios are lower than prediction?

LFUV searches: previous results

Data sample

> Data Parking stands for "data that will be reconstructed later"

- In 2018, CMS implemented "B-parking"
- triggering on low momentum electrons is very hard
 leverage the bbbar pair production, trigger on one
 B and investigate the other
- Triggering on displaced muon from SL b decays
 Constantly utilize full L1 bandwidth

CMS-EXO-23-007

Using a family of L1 seeds with decreasing thresholds as lumi decreases, to "fill the gap to 100 kHz"

- Require muon displacement at HLT
- \blacktriangleright Resulting purity ~75-80% (events with b hadron)
- Dedicated low-p_T electron reconstruction

Measurement strategy

<u>CMS-BPH-22-005,</u> <u>*Rep. Prog. Phys. 87 (2024) 077802*</u>

Measuring double ratio to reduce systematics

 $R_{K,K^*}(q_a^2, q_b^2) = \frac{\int_{q_a^2}^{q_b^2} \frac{\mathrm{d}\Gamma(B^{(+,0)} \to K^{(+,*0)}\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_a^2}^{q_b^2} \frac{\mathrm{d}\Gamma(B^{(+,0)} \to K^{(+,*0)}e^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2} = \frac{\mathcal{B}(\mathbf{B}^+ \to \mathbf{K}^+\mu^+\mu^-)[q_{\min}^2, q_{\max}^2]}{\mathcal{B}(\mathbf{B}^+ \to \mathbf{J}/\psi(\mu^+\mu^-)\mathbf{K}^+)} / \frac{\mathcal{B}(\mathbf{B}^+ \to \mathbf{K}^+e^+e^-)[q_{\min}^2, q_{\max}^2]}{\mathcal{B}(\mathbf{B}^+ \to \mathbf{J}/\psi(e^+e^-)\mathbf{K}^+)}$

- Muon channel on tag side, electron channel on probe side
- \succ Electrons from two algos: PF and LP \rightarrow PFPF and PFLP categories
- BDT discriminator(s) for background rejection
 - Features: vertex displacement, fit probability, pointing angle muon isolation, kaon p_T, B p_T

electron p_T , isolation, K IP w.r.t ee vertex, ID

Dedicated vetoes to kill backgrounds from charm and charmonia

<u>CMS-BPH-22-005,</u> <u>*Rep. Prog. Phys. 87 (2024) 077802*</u> **Observed** signals

33.6 fb⁻¹ (13 TeV)

Candidates / 20 MeV 300 Total fit $q^2 \in [1.1, 6.0] \text{ GeV}^2$ --- B⁺→K⁺μ⁺μ⁻ Signal: 1257 ± 31 ----- Other B & Comb 200 -··-· B^{0/+}→K^{*0/+}μ⁺μ⁻ ····· B⁺→π⁺μ⁺μ[−] 100 Data Pull 5.2 5.3 5.4 5.5 5.6 5.1 5 $m(K^{\dagger}\mu^{\dagger}\mu^{-})$ [GeV] CMS Candidates / 50 MeV Total fit 40 PF-PF Category B⁺→K⁺e⁺e⁻ $q^2 \in [1.1, 6.0] \text{ GeV}^2$ Combinatorial B⁺→J/ψK⁺ 30 -Signal: 18 ± 7 Data 20 10 2 Pull 4.8 5.2 5.4 5.6 5

CMS

At just 20 events in the signal channel, the precision of R(K) measurement is quite low

R(K) result

$$R(K) = 0.78^{+0.46}_{-0.23} (\text{stat})^{+0.09}_{-0.05} (\text{syst}) = 0.78^{+0.47}_{-0.23}$$

The resulting value is consistent both with SM and LHCb, but the precision is not competitive

The main reason is the difficulty with low- p_T electrons, especially at the trigger level, which is why the trigger for this analysis searches for *the other b* in an event

CMS has learned a lot and huge improvement is expected in Run-3, stay tuned!

Summary

- ✤ Many new results on rare $b \rightarrow sll$ decays, sensitive to NP, are obtained in the last few years
- Some ~3-4σ tensions w.r.t. SM have been observed in B meson decays
- ♦ CMS made an angular analysis of the $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decay with full Run-2 data
 - The results agree with and are as precise as earlier LHCb results
 - Confirming the tension between experiment and SM in P₅ parameter
- R(K) measurement is very challenging at CMS due to low-p_T electrons
 - The result agrees (with large uncertainties) with LHCb and LFU=SM
 - ✤ In the meanwhile, refreshed LHCb results from last year also agree with LFU=SM...
- Run-3 triggers will allow to make significantly more precise measurements

http://cms-results.web.cern.ch/cms-results/public-results/publications/BPH/ https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH/index.html

BACKUP

Search for $D^0 \rightarrow \mu \mu$

With many studies of $b \rightarrow sll$ transitions, even more rare $c \rightarrow ull$ ones are often forgotten/neglected

CMS searches for the $D^0 \rightarrow \mu\mu$ decay via $D^{*+} \rightarrow D^0\pi^+$ to suppress bkg

One of the first analyses to:

use Run-3 13.6 TeV data!

Normalization relative to $D^0 \rightarrow \pi^+\pi^-$

use new inclusive dimuon triggers

(2022+2023 in this case)

No signal observed, UL set at

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-9} \text{ at } 95\% \text{ CL}$$

Best limit to date, 35% improvement over <u>LHCb</u> SM prediction $\sim 3*10^{-13}$

CMS-PAS-BPH-23-008

"anomalies" in FCNC transitions

B⁰→**K**^{*0} μ ⁺ μ ⁻, CMS and ATLAS Run-1

 B_s^0 → $φ\mu^+\mu^-$ angular, Run-1+Run-2 (no 2015), ~2000 signal

CMS Run-2 analysis in development

LHCb-PAPER-2021-022, JHEP11(2021)043

B⁺→**K**^{*+}**µ**⁺**µ**⁻, (K^{*+}→K⁰_Sπ⁺) CMS Run-1, ~90 signal Lower statistics compared to K^{*0} channel because of K⁰_S

CMS-BPH-15-009, JHEP04(2021)124

200

Candidates / $(8.5 \,\mathrm{MeV}/c^2)$ 00

5200

5400

LHCb

 $9\,\mathrm{fb}^{-1}$

5800

 $m(K_c^0\pi^+\mu^+\mu^-)$ [MeV/ c^2]

6000

 $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

737±34

5600

B⁺→**K**^{*+}**µ**⁺**µ**[−], (K^{*+}→K⁰_Sπ⁺) LHCb Run-1 + Run-2, ~90 signal Lower statistics compared to K^{*0} channel because of K⁰_S Two categories based on K⁰_S decay vertex position

Angular analysis, measuring full set of optimized variables, F_L,S₃,S₄, S₅, A_{FB}, S₇, S₈, S₉, P₁, P₂, P₃, P'₄, P'₅, P'₆, P'₈ *in 5 folds of the data, due to limited stat.*

3.1 σ tension w.r.t SM at low q²!

LHCb-PAPER-2020-041, Phys.Rev.Lett.126(2021)161802 24

Table 2: Measured CP-averaged angular observables, in the corresponding q^2 bins. The first uncertainties are statistical and the second systematic.

		$1.1 < q^2 < 2 \text{ GeV}^2$	$2 < q^2 < 4.3 { m GeV}^2$	$4.3 < q^2 < 6 \text{ GeV}^2$
_	F _L	$0.709^{+0.073}_{-0.054}\pm0.021$	$0.810^{+0.036}_{-0.030}\pm0.016$	$0.714^{+0.032}_{-0.030}\pm0.012$
	<i>P</i> ₁	$0.089^{+0.234}_{-0.204}\pm0.040$	$-0.285^{+0.187}_{-0.208}\pm0.051$	$-0.297^{+0.153}_{-0.168}\pm0.038$
	<i>P</i> ₂	$-0.374^{+0.173}_{-0.125}\pm0.095$	$-0.244^{+0.094}_{-0.077}\pm0.039$	$0.121^{+0.080}_{-0.076}\pm0.030$
	<i>P</i> ₃	$-0.045^{+0.209}_{-0.216}\pm0.044$	$-0.187^{+0.196}_{-0.218}\pm0.089$	$-0.027^{+0.143}_{-0.143}\pm0.081$
	P'_4	$-0.436^{+0.289}_{-0.323}\pm0.111$	$-0.431^{+0.160}_{-0.185}\pm0.075$	$-0.717^{+0.154}_{-0.158}\pm0.074$
	P'_5	$0.363^{+0.165}_{-0.132}\pm0.028$	$-0.139^{+0.103}_{-0.087}\pm0.039$	$-0.435^{+0.096}_{-0.101}\pm0.027$
	P'_6	$0.000^{+0.094}_{-0.097}\pm0.021$	$0.108^{+0.075}_{-0.071}\pm0.018$	$0.129^{+0.074}_{-0.071}\pm0.011$
	P'_8	$-0.157^{+0.368}_{-0.369}\pm 0.113$	$-0.727^{+0.193}_{-0.184}\pm0.056$	$0.007^{+0.215}_{-0.216}\pm0.036$
	6	$< q^2 < 8.68 { m GeV}^2$ 1	$10.09 < q^2 < 12.86 \text{ GeV}^2$	$14.18 < q^2 < 16 \ { m GeV}^2$
F _L	6	$< q^2 < 8.68 \text{ GeV}^2$ 1 $0.627^{+0.016}_{-0.016} \pm 0.011$	$\frac{10.09 < q^2 < 12.86 \text{ GeV}^2}{0.474^{+0.011}_{-0.013} \pm 0.009}$	$\frac{14.18 < q^2 < 16 \ \mathrm{GeV}^2}{0.394^{+0.012}_{-0.012} \pm 0.009}$
F_L P_1	6 0 -	$< q^2 < 8.68 \text{ GeV}^2$ 1 $0.627^{+0.016}_{-0.016} \pm 0.011$ $0.056^{+0.101}_{-0.102} \pm 0.046$	$\frac{10.09 < q^2 < 12.86 \text{ GeV}^2}{0.474^{+0.011}_{-0.013} \pm 0.009}$ $-0.439^{+0.051}_{-0.047} \pm 0.030$	$\begin{array}{c} 14.18 < q^2 < 16 \ {\rm GeV}^2 \\ \\ 0.394^{+0.012}_{-0.012} \pm 0.009 \\ \\ -0.465^{+0.037}_{-0.037} \pm 0.025 \end{array}$
$\overline{F_L}$ P_1 P_2	6 0 -	$< q^2 < 8.68 \text{ GeV}^2$ 1 $0.627^{+0.016}_{-0.016} \pm 0.011$ $0.056^{+0.101}_{-0.102} \pm 0.046$ $0.188^{+0.039}_{-0.040} \pm 0.014$	$\frac{10.09 < q^2 < 12.86 \text{ GeV}^2}{0.474^{+0.011}_{-0.013} \pm 0.009}$ $-0.439^{+0.051}_{-0.047} \pm 0.030$ $0.386^{+0.021}_{-0.019} \pm 0.018$	$\begin{array}{c} 14.18 < q^2 < 16 \ \mathrm{GeV}^2 \\ 0.394^{+0.012}_{-0.012} \pm 0.009 \\ -0.465^{+0.037}_{-0.037} \pm 0.025 \\ 0.440^{+0.008}_{-0.010} \pm 0.008 \end{array}$
F_L P_1 P_2 P_3	6 0 	$< q^2 < 8.68 \text{ GeV}^2$ 1 $0.627^{+0.016}_{-0.016} \pm 0.011$ $0.056^{+0.101}_{-0.102} \pm 0.046$ $0.188^{+0.039}_{-0.040} \pm 0.014$ $0.099^{+0.092}_{-0.090} \pm 0.014$	$10.09 < q^{2} < 12.86 \text{ GeV}^{2}$ $0.474^{+0.011}_{-0.013} \pm 0.009$ $-0.439^{+0.051}_{-0.047} \pm 0.030$ $0.386^{+0.021}_{-0.019} \pm 0.018$ $0.013^{+0.041}_{-0.043} \pm 0.007$	$\begin{split} & 14.18 < q^2 < 16 ~ \mathrm{GeV}^2 \\ & 0.394^{+0.012}_{-0.012} \pm 0.009 \\ & -0.465^{+0.037}_{-0.037} \pm 0.025 \\ & 0.440^{+0.008}_{-0.010} \pm 0.008 \\ & -0.034^{+0.037}_{-0.038} \pm 0.010 \end{split}$
$\overline{F_L}$ P_1 P_2 P_3 P_4'	6 0 0 0 0	$< q^2 < 8.68 \text{ GeV}^2$ 1 $0.627^{+0.016}_{-0.016} \pm 0.011$ $0.056^{+0.101}_{-0.102} \pm 0.046$ $0.188^{+0.039}_{-0.040} \pm 0.014$ $0.099^{+0.092}_{-0.090} \pm 0.014$ $0.949^{+0.102}_{-0.101} \pm 0.058$	$\begin{array}{l} 10.09 < q^2 < 12.86 \ \mathrm{GeV}^2 \\ \hline 0.474^{+0.011}_{-0.013} \pm 0.009 \\ -0.439^{+0.051}_{-0.047} \pm 0.030 \\ \hline 0.386^{+0.021}_{-0.019} \pm 0.018 \\ \hline 0.013^{+0.041}_{-0.043} \pm 0.007 \\ -1.025^{+0.064}_{-0.066} \pm 0.059 \end{array}$	$\begin{split} & 14.18 < q^2 < 16 ~ \text{GeV}^2 \\ & 0.394^{+0.012}_{-0.012} \pm 0.009 \\ & -0.465^{+0.037}_{-0.037} \pm 0.025 \\ & 0.440^{+0.008}_{-0.010} \pm 0.008 \\ & -0.034^{+0.037}_{-0.038} \pm 0.010 \\ & -1.159^{+0.042}_{-0.038} \pm 0.041 \end{split}$
F_L P_1 P_2 P_3 P'_4 P'_5	6 0 0 0 0	$< q^2 < 8.68 \text{ GeV}^2$ 1 $0.627^{+0.016}_{-0.016} \pm 0.011$ $0.056^{+0.101}_{-0.102} \pm 0.046$ $0.188^{+0.039}_{-0.040} \pm 0.014$ $0.099^{+0.092}_{-0.090} \pm 0.014$ $0.949^{+0.102}_{-0.101} \pm 0.058$ $0.495^{+0.067}_{-0.067} \pm 0.023$	$\begin{array}{l} 10.09 < q^2 < 12.86 \ \mathrm{GeV}^2 \\ \hline 0.474^{+0.011}_{-0.013} \pm 0.009 \\ -0.439^{+0.051}_{-0.047} \pm 0.030 \\ \hline 0.386^{+0.021}_{-0.019} \pm 0.018 \\ \hline 0.013^{+0.041}_{-0.043} \pm 0.007 \\ -1.025^{+0.064}_{-0.066} \pm 0.059 \\ -0.746^{+0.033}_{-0.032} \pm 0.014 \end{array}$	$\begin{split} & 14.18 < q^2 < 16 ~ \text{GeV}^2 \\ & 0.394^{+0.012}_{-0.012} \pm 0.009 \\ & -0.465^{+0.037}_{-0.037} \pm 0.025 \\ & 0.440^{+0.008}_{-0.010} \pm 0.008 \\ & -0.034^{+0.037}_{-0.038} \pm 0.010 \\ & -1.159^{+0.042}_{-0.038} \pm 0.041 \\ & -0.688^{+0.038}_{-0.036} \pm 0.021 \end{split}$
F_L P_1 P_2 P_3 P_4' P_5' P_6'	6 0 0 0 0 0 0	$< q^2 < 8.68 \text{ GeV}^2$ 1 $0.627^{+0.016}_{-0.016} \pm 0.011$ $0.056^{+0.101}_{-0.102} \pm 0.046$ $0.188^{+0.039}_{-0.040} \pm 0.014$ $0.099^{+0.092}_{-0.090} \pm 0.014$ $0.949^{+0.102}_{-0.101} \pm 0.058$ $0.495^{+0.067}_{-0.067} \pm 0.023$ $0.010^{+0.052}_{-0.052} \pm 0.016$	$\begin{array}{c} 10.09 < q^2 < 12.86 \ \mathrm{GeV}^2 \\ \hline 0.474^{+0.011}_{-0.013} \pm 0.009 \\ -0.439^{+0.051}_{-0.047} \pm 0.030 \\ \hline 0.386^{+0.021}_{-0.019} \pm 0.018 \\ \hline 0.013^{+0.041}_{-0.043} \pm 0.007 \\ -1.025^{+0.064}_{-0.066} \pm 0.059 \\ -0.746^{+0.037}_{-0.041} \pm 0.014 \\ \hline 0.080^{+0.037}_{-0.041} \pm 0.011 \end{array}$	$\begin{split} & 14.18 < q^2 < 16 ~ \mathrm{GeV}^2 \\ & 0.394^{+0.012}_{-0.012} \pm 0.009 \\ & -0.465^{+0.037}_{-0.037} \pm 0.025 \\ & 0.440^{+0.008}_{-0.010} \pm 0.008 \\ & -0.034^{+0.037}_{-0.038} \pm 0.010 \\ & -1.159^{+0.042}_{-0.038} \pm 0.041 \\ & -0.688^{+0.038}_{-0.036} \pm 0.021 \\ & 0.121^{+0.040}_{-0.039} \pm 0.011 \end{split}$

_

P5' HL-LHC

Run 3 and HL-LHC projections

- Up to x15 improvement w/ 3 ab⁻¹ compared to the 8 TeV CMS result [PLB 781 (2018) 517]
- Should be possible to resolve the situation experimentally already in Run 3

CMS experiment

architecture of the CMS Trigger

LHC

Trigger System

- reduce the number of events from the LHC collision rate (40 MHz) to the data rate that can be stored, 40 MHz reconstructed and analysed Offline (~1 kHz) O(few kHz)
- maximising the physics reach of the experiment

L1 Trigger

- coarse readout of the Calorimeters and Muon detectors
- implemented in custom electronics, ASICs and FPGAs
- 3 event types, 128 "physics" bits + 64 "technical" bits
- output rate limited to 100 kHz by the readout electronics a bit more than 100 kHz in Run3

High Level Trigger

- readout of the whole detector with full granularity
- based on the CMSSW software, running on O(15k) Xeon cores
- organised in O(2500) modules, O(400) trigger paths, O(10) streams
- output rate limited to an average of ~1 kHz by the Offline resources

O(few kHz)

Contraction of the local division of the loc

full readout

100 kHz

L1 Trigger

Offline

~1 kHz

O(few kHz)

$B^0 \rightarrow \phi \mu \mu$

28

$B^0 \rightarrow K^{*0} \mu^{\mp} e^{\pm} and B^0_s \rightarrow \phi \mu^{\mp} e^{\pm}$

Nnorm:

LHCb preliminary

LHCP-PAPER-2022-008. Full Run-1 + Run-2 analysis Normalization using $B^0 \rightarrow J/\psi K^{*0}$ and $B^0_s \rightarrow J/\psi \phi$

<u>World-best limits</u>

$\mathrm{K}^{0}_{\mathrm{S}}\!\rightarrow\mu\mu$

➢ FCNC process, in SM B(K⁰_S → μ⁺μ⁻)_{SM} = (5.18 ± 1.50_{LD} ± 0.02_{SD}) × 10⁻¹²➢ Some NP (SUSY/LQ) models modify the B➢ LHCb performed a search using Run-2 data➢ Normalization using decay to π⁺π⁻

This decay is also the main background

Statistically combined with Run-1 result upper limit is most stringent to date:

$$\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10} \text{ at } 90\% \text{ CL}$$

$B^+\!\!\to K^+\mu^-\!\tau^+$

LHCb Full Run 1 + Run 2 analysis

Using $B_{s2}^* \rightarrow B^+K^-$ decays to tag partially-reconstructed B^+ mesons

$$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5} \text{ at } 90\% \text{ CL}$$

Weaker than 2012 BaBar upper limit

 $\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 2.8 \times 10^{-5} \text{ at } 90\%$

LHCb-PAPER-2019-043, JHEP06(2020)129

More details in the parallel talk by Liang S. yesterday

$B^+ \rightarrow K^+ \mu^{\mp} e^{\pm}$

LHCb Run-1 analysis Normalization using $B^+ \rightarrow K^+\mu^-\mu^+$ (with J/ ψ) LHCb-PAPER-2019-022, Phys.Rev.Lett.123(2019)241802

$$\mathcal{B}(B^+ \to K^+ \mu^- e^+) < 7.0 \ (9.5) \times 10^{-9}$$

$$\mathcal{B}(B^+ \to K^+ \mu^+ e^-) < 6.4 \ (8.8) \times 10^{-9}$$

World-best limits

More details in the parallel talk by Liang S. yesterday

Run-2 analysis ongoing

EFT for $b \rightarrow$ sll decays

In general, $b \rightarrow sll$ transitions can be described using an EFT approach

