

Measurements of lepton flavour universality in B_c^+ meson decays

Aleksandr Sedelnikov¹ on behalf of the CMS Collaboration

aleksandr.sedelnikov@cern.ch

¹ Moscow Institute of Physics and Technology (MIPT)

24th October 2024

Author acknowledges support by RSF (grant No. 23-12-00083)

Aleksandr Sedelnikov

- Introduction
- Leptonic τ decay cannel
- Hadronic τ decay cannel
- Summary

- In SM the three lepton families have the same couplings for electroweak interactions Lepton Flavour Universality (LFU)
- A potential observation of LFU violation would be a clear sign of new physics beyond the SM
- Most measurements are consistent with LFU , though there are residual indications of potential violation in $b \rightarrow c\tau v$ transitions

Introduction

Phys. Rev. D 88, 072012 Phys. Rev. D 94, 072007

- BaBar, Belle and LHCb collaborations investigated R(*D*) and R(*D*^{*})
- Combination of both
 R(D) and R(D*) measurements is 3.2 σ
 larger than the SM prediction
- The LHCb Collaboration measured $R(J/\psi)$ = $B(B_c^+ \rightarrow J/\psi \tau^+ \nu_{\tau})/B(B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu})$ = 0.71 ± 0.17 (stat) ± 0.18 (syst) 2σ deviation w.r.t. SM

Phys. Rev. Lett. 120, 121801

Phys. Rev. Lett. 115, 159901

Aleksandr Sedelnikov

ICPPA 2024

3

R(D)

R(J/ ψ) in the $\tau^+ \rightarrow \mu^+ v_{\mu} \overline{v}_{\tau}$ channel

Aleksandr Sedelnikov

ICPPA 2024

October 24, 2024

Signal extraction

$$R(J/\psi) = \frac{B(B_c \to J/\psi\tau\bar{\nu})}{B(B_c \to J/\psi\mu\bar{\nu})} = \frac{B(B_c \to J/\psi\mu\nu\bar{\nu}\bar{\nu})}{B(B_c \to J/\psi\mu\bar{\nu})}$$

- Measurement uses Run2 2018 CMS data corresponding to an integrated luminosity of 59.7 fb⁻¹
- Similar final states for num. and den. (3µ) same reconstruction is used
- To infer the p^{B_c} the collinear approximation is used: B_c has the same direction of the visible final state, and $p^{B_c} = \frac{m_B}{m_{reco}} p^{B_c \operatorname{reco}}$

•
$$q^2 = (p^{B_c} - p^{J/\psi})^2$$

Background Estimation

 $J/\psi\mu$ background: dominant MC based; normalisation B_c background: data-driven MC based; normalisation data-CMS Work in ogress events driven 4500 B₆→h_cμ B⁰→J/ΨμX 4000 E • Feeddowns: excited $\Sigma_b^{0/-} \rightarrow J/\Psi\mu$ comb J/Ψ 3500 $c\bar{c}$ states to J/ψ 3000 E • Other J/ψ +charmed hadron, mostly 200 $B_c \rightarrow D_s^{(*)} J/\psi$ 1500

1000

6

Bs negligible $L = 59.7 \text{ fb}^{-1} (13)$ DiMuon $B_c \rightarrow \Psi(2S)_T$ B_{δ}^{δ} →J/ΨµX Ξ_→J/ΨuX Data-driven $R(J/\Psi) = 1.00$ Pairs of unrelated muons with $m(\mu\mu)$ close to that of the J/Ψ **Muon fakes** Data-driven antiisolated μ sideband J/Ψ + misidentified hadron q² (GeV²)

Aleksandr Sedelnikov

Signal $\mu: B_c \to J/\psi \mu \nu_{\mu}$ Signal $\tau: B_c \to J/\psi \tau \nu_{\tau}$

ICPPA 2024

8

9

B_c→J/Ψ

 $B_c \rightarrow \Psi(2S)_{\mu}$

Fit strategy

$Cate_{m(3u)}$	gory pair def a^2	Fit obs	Fit observable		
$< m_{\rm B_{c}^{+}}$	9 >5.5 GeV	$\frac{110D}{-1}$ -2 -1-0 0-2 >2	<u>3D</u> 9	2	
$< m_{\rm B_c^+}$	<4.5 GeV	<0 >0	L_{xy} /	$\sigma_{L_{xy}}$	
$> m_{\rm B_c^+}$	—	—	L_{xy} /	$\sigma_{L_{xy}}$	
	t				
$m(3\mu) > 6.3 \ GeV$ HM	Control <i>H_b</i> sar normalisatio	nple n Co	Empty by construction		
m(3μ) < 6.3 GeV LM	Control <i>B_c</i> san normalisatio	nple on Sig	gnal Region		
	Q ² < 4.5 LQ2		Q ² > 5.5 HQ2		

- A binned maximum-likelihood fit is performed simultaneously to all categories
- Several systematic uncertainties are incorporated into the fit as nuisance parameters

Aleksandr Sedelnikov

ICPPA 2024

7

CMS

Final result:
$$R(J/\psi) = 0.17^{+0.18}_{-0.17} (stat)^{+0.21}_{-0.22} (sist)^{+0.19}_{-0.18} (theo) = 0.17 \pm 0.33$$

- The result agrees with <u>SM value</u> 0.2582 ± 0.0038 within 0.3σ
- The result is compatible with the <u>LHCb measurement</u> 0.71 ± 0.17 (stat) ± 0.18 (syst) withi 1.3σ

R(J/ ψ) in the $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (+\pi^0) \overline{v}_{\tau}$ channel

Aleksandr Sedelnikov

October 24, 2024

Signal extraction

- Analysis is based on Run2 2016-2018 CMS data corresponding to an integrated luminosity of 138 fb⁻¹
- 3 prong tau decays have a good chance to produce an intermediate $\rho(770 MeV)$ -resonance ($\rightarrow 2\pi$)
- OS pairs as possible ρ(770MeV) combinations: π1+π2; π1+π3; π2+π3
- The unrolled p1-p2 distribution is used as discriminating variable in the fit for the signal

$$R(J/\psi) = \frac{B(B_c \to J/\psi\tau\bar{\nu})}{B(B_c \to J/\psi\mu\bar{\nu})} = \frac{B(B_c \to J/\psi\pi\pi\pi(+\pi^0)\bar{\nu})}{B(B_c \to J/\psi\mu\bar{\nu})}$$

ICPPA 2024

CMS

Background estimation

- Signal (estimation based on MC)
- Bc Backgrounds: $Bc \rightarrow J/\psi D(*)s (\rightarrow 3 prong)$ (MC)
- Other Bc decays: mainly Bc $\rightarrow J/\psi D+(*)$, Bc $\rightarrow J/\psi D+K0(*)$, Bc $\rightarrow J/\psi D0(*)K+$ (MC)
- Major background pp->Hadr(b)->J/ψ
 + X: Non-Bc hadrons producing J/ψ+X final state.Estimated directly in data.

- The SR is defined as BDT > 4.2 (BDT > 3.5) for the 2017/2018 (2016) data sets.
- The SB region is defined as 2.5 < BDT < 3.5 (2 < BDT < 3) for 2017/2018 (2016)

Fit strategy

- Simultaneous fit is performed with the leptonic τ analysis
- Systematic uncertainties are incorporated into the fit as nuisance parameters
- Fit can treat the common nuisance parameters between two channels

- The leptonic τ analysis uses 2018 data only, therefore R(J/ ψ) (2018) is evaluated, by ignoring the 2016 and 2017contributions, and it is measured to be $0.74^{+0.57}_{-0.53}$
- By combining also the contributions from 2016 and 2017:

$$R(J/\psi) = 1.04^{+0.50}_{-0.44}$$

• Final result from overall simultaneous fit (including also the numerator from leptonic analysis):

 $R(J/\psi) = 0.49 \pm 0.25 \text{ (stat)} \pm 0.09 \text{ (sist)}$

Summary

- The first measurement of R(J/ψ) from general purpose experiment is performed
- For the lepronic τ decay analysis: R(J/ ψ) = 0.17 ± 0.33
- For the hadronic τ decay analysis: R(J/ ψ) = 1.04^{+0.50}_{-0.44}
- Combination of leptonic and hadronic decay modes gives: $R(J/\psi) = 0.49 \pm 0.25 \text{ (stat)} \pm 0.09 \text{ (sist)}$, which is consistent with the SM within 1σ
- Precision competitive with the current result from LHCb

Backup slides

Aleksandr Sedelnikov

ICPPA 2024

October 24, 2024

CMS detector

Aleksandr Sedelnikov

ICPPA 2024

October 24, 2024

Contribution	Type	Unc. (10^{-2})	
Form factor (theory)	S	19	
misID statistical misID systematic	S (bin-by-bin) N <i>,</i> S	13 8, 0.7	
Finite MC size	S (bin-by-bin)	9	
Topological	S	9	
Efficiencies	Ν	6	
Total systematic unce	28		

Systematics - hadronic channel

18

Sustamatic course	Туре	Affected proc.	channel			
Systematic source			τ_{μ} 2018	$ au_{ m h}$ 2018	$ au_{ m h}$ 2017	$ au_{ m h}$ 2016
Form factor	shape	${ m B}_{ m c}^+ ightarrow { m J}/\psi \ell { m v}_\ell$	\checkmark	\checkmark	\checkmark	\checkmark
Tauola modeling	shape	${ m B}^+_c ightarrow { m J}/\psi au^+ u_ au$		\checkmark	\checkmark	\checkmark
B ⁺ _c decay lifetime	shape	All B_c^+ procs.	\checkmark	\checkmark	\checkmark	\checkmark
$H_b \rightarrow J/\psi X$ shape	shape	DD bkg.		\checkmark	\checkmark	\checkmark
Pileup weight	shape	All MC	\checkmark	\checkmark	\checkmark	\checkmark
Missing B_c^+ bkg.	shape	other B _c ⁺		\checkmark	\checkmark	\checkmark
Bin-by-bin	shape	All	\checkmark			.(
uncertainties				v	v	•
Triplet reco. eff.	norm.	${ m B_c^+} ightarrow{ m J/\psi} au^+ u_{ au}$		6.9% (√)	6.9% (√)	6.9% (√)
$ m B_c^+ ightarrow m J/\psi D_s^{(*)}$	norm.	$\mathrm{B_{c}^{+}} ightarrow \mathrm{J/\psi D_{s}^{(*)}}$	38% (🗸)	38% (√)	38% (√)	38% (√)
normalisation						
Other minor B _c ⁺	norm.	other B_c^+		50% (.()	50% (.()	50%(.(.))
normalisation				5078 (v)	5078 (v)	5078 (v)
Trigger ($\mu^+\mu^-$)	norm.	All MC	10% (🗸)	10% (\checkmark) \oplus 5%	10%	10%
Trigger (track)	norm.	All MC		10%	10%	10%
Trigger (J/ ψ)	norm.	All MC		10%	10%	10%
Muon ID	norm.	All MC	4%	4%	4%	4%
Muon Reco	norm.	All MC	4% (√)	4% (√)	4%	4%
Bkg. norm.	norm.	DD bkg.	<	30%	30%	30%
B_c^+ MC norm.	norm.	All B_c^+		5%	30%	30%
Displaced track reco eff.	norm.	All B _c ⁺		5% (√)	5% (🗸)	5% (√)

Aleksandr Sedelnikov

1. the SoftMva ID = 0 region is used to learn the "difference" between the $\Delta\beta$ corrisoµ3 < 0.2 and $\Delta\beta$ corrisoµ3 > 0.2 subregions, named ID region C and D in the scheme;

2.results are then extrapolated to the softMvaID = 1 region to find the fakes shape in region A.

CMS

The Combinatorial Background comes from pairing unrelated muons to form J/ψ candidates.

To estimate this background in SR:

- The dimuon shape is taken from SB and kinematical correction
- The dimuon normalisation is taken from the fit to $m(\mu\mu)$

