

Charmonia production in e^+e^- annihilation at center-of-mass energies above 3.81 GeV

Olga Bakina Joint Institute for Nuclear Research, Dubna on behalf of the BESIII Collaboration

The 7th International Conference on Particle Physics and Astrophysics Moscow, Russia, October 22-25, 2024

The BESIII experiment

 e^+e^- collisions in the $\tau\text{-charm}$ energy region, $L_{peak}=1{\times}10^{33}\,cm^{-2}~s^{-1}$

Data taking from 2009: the largest data sets at the $J/\psi,\,\psi(3686),\,{\rm and}\,\,\psi(3770)$ peaks; scan data at $\sqrt{s}=2.00-4.95~GeV$

Superconducting Solenoidal Magnet: 0.9/1.0 T

MDC

dE/dx: 6% $\sigma_{\rm p}/{\rm p:}~0.5\%~{\rm at}~1~{\rm GeV/c}$

\mathbf{TOF}

σ_T: 68 ps 110 ps (60 ps)

\mathbf{EMC}

 $\Delta {\rm E/E:}~2.5\%~(5\%)$ at 1 GeV

 σ_z : 0.6 cm/ \sqrt{E}

MUC

 $\sigma_{R\Phi}: 2 \text{ cm}$

Figure: The BESIII detector at BEPCII.

Charmonium(-like) states

First observation of three charmonium-like states in $e^+e^- \rightarrow D_{\rm s}{}^{*+}D_{\rm s}{}^{*-}$

Data: $\mathcal{L} = 15.67 \text{ fb}^{-1}, \sqrt{s} = 4.226 - 4.951 \text{ GeV}$

Phys.Rev.Lett. 131 (2023) 15, 151903

Channel: $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$, $D_s^{*\pm} \rightarrow \gamma D_s^{\pm} \rightarrow \gamma K^+K^-\pi^{\pm}$

Figure: The fit result to the Born cross section line shape of $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$.

First observation of a three-resonance structure in $e^+e^- \rightarrow$ nonopen charm hadrons

Data: $\mathcal{L} = 75.5 \text{ pb}^{-1}, \sqrt{s} = 3.645 - 3.871 \text{ GeV}$

Phys.Rev.Lett. 132 (2024) 19, 191902

Channel: $e^+e^- \rightarrow$ nonopen charm hadrons

Observation of charmonium-like states in the process $e^+e^- \rightarrow K^+K^-J/\psi$

Data: $\mathcal{L} = 5.85 \text{ fb}^{-1}, \sqrt{s} = 4.61 - 4.95 \text{ GeV}$

Phys.Rev.Lett. 131 (2023) 21, 211902

Channel: $e^+e^- \rightarrow K^+K^-J/\psi$, $J/\psi \rightarrow l^+l^ (l = e, \mu)$

The suppression of the decay $Z_{cs}(3985)^+ \rightarrow K^+J/\psi$ supports the $Z_{cs}(3985)^{+(*)}$ and $Z_{cs}(4000)^{+(**)}$ as two different states.

$$\begin{array}{l} \textbf{(*) BESIII: } e^+e^- \to KZ_{cs}(3985), \\ Z_{cs}(3985)^+ \to (\overline{D}{}^0D_s{}^{*+} + \overline{D}{}^{*0}D_s{}^+) \\ \textbf{(**) LHCb: } B^+ \to K^+J/\psi \varphi, \\ Z_{cs}(4000)^+ \to K^+J/\psi \end{array}$$

Figure: Fit to the dressed cross section of $e^+e^- \rightarrow K^+K^-J/\psi$.

Observation of charmonium-like states in the processes $e^+e^- \rightarrow \omega \chi_{c1}$ and $\omega \chi_{c2}$

Data: $\mathcal{L} = 11.0 \text{ fb}^{-1}, \sqrt{s} = 4.308 - 4.951 \text{ GeV}$

Phys.Rev.Lett. 132 (2024) 16, 161901

Channel: $e^+e^- \rightarrow \omega \chi_{c1,2}, \chi_{c1,2} \rightarrow \gamma J/\psi, J/\psi \rightarrow l^+ l^- (l = e, \mu), \omega \rightarrow \pi^+\pi^-\pi^0, \pi^0 \rightarrow \gamma \gamma$

Figure: Fits to the dressed cross sections of $e^+e^- \rightarrow \omega \chi_{c1}$ and $e^+e^- \rightarrow \omega \chi_{c2}$ with one single resonance.

Prompt inclusive charmonium production

Goal:

- Test the NRQCD factorization hypothesis: the independence of Long Distance Matrix Elements (LDME) that describe the hadronization of the cc pair from the process (hadron-hadron collisions, electroproduction, or e⁺e⁻ annihilation);
- Clarify the contribution of the color octet channel in the range of √s below the J/ψcc threshold (~6 GeV): the color-octet LDMEs are non-zero if σ >10 pb at √s = 4.6 ~ 5.6 GeV (Eur. Phys. J. C (2017) 77: 597);
- > Test if unknown channels/states exist.

Data only available at $\sqrt{s} = 10.6$ GeV: ~ 2.5 \pm 0.3 pb (BaBar)

- \sim 1.5 ± 0.2 pb (Belle)
- $\checkmark~1.9\pm0.2~\text{pb}~(\text{CLEO})$

Figure: NRQCD factorization. The LDMEs $\langle O^{H}_{n} \rangle$ are determined from experimental data.

Prompt inclusive J/ψ and $\psi(3686)$ production (I)

Data: $\mathcal{L} = 22 \text{ fb}^{-1}, \sqrt{s} = 3.81 - 4.95 \text{ GeV}$

Channel: $J/\psi \rightarrow \mu^+\mu^-$, $\psi(3686) \rightarrow J/\psi \pi^+\pi^-$, $\chi_{cJ} \rightarrow \gamma J/\psi$, (J = 1, 2)

Figure: Yield of J/ψ from different sources normalized to corresponding luminosity.

Prompt inclusive J/ψ and $\psi(3686)$ production (II)

The preliminary result for the prompt inclusive production of

the $\psi(3686)$ meson in the range the J/ψ meson in the range 4.84 ~ 4.95 GeV is $4.53 \sim 4.95 \text{ GeV}$ is $\sigma = 14.0 \pm 1.7_{stat}\, pb$ $\sigma = 16.9 \pm 2.8_{\rm stat} \; pb$ 140 → ψ(3686)X), pb 200 σ_{Inclusive prompt J/ψ} nclusive prompt w(3686) $\sigma(e^+e^- \rightarrow J/\psi X)$, pb 120 $\sigma_{Total exclusive J/\psi}$ 150 100 **BESIII Preliminary** 80 100 60 **BESIII** Preliminary 40 50 σ(e⁺e¯ 20 C -204.2 3.8 4.2 4.6 4.8 5 4.4 4.6 4.8 4 44 vs. GeV vs. GeV

5

Figure: Prompt inclusive and total exclusive J/ψ cross sections.

- > The charmonia production is a proven tool for verifying the basics of QCD;
- > The BESIII experiment successfully applies e⁺e⁻ annihilation data sets to search for new exotic charmonium-like states and study their properties;
- > The prompt inclusive production of classical charmonia allows the BESIII experiment to test various theoretical models of the strong interaction at low energies, especially, NRQCD;
- > The upcoming upgrade of the BEPCII will allow the BESIII experiment to explore charmonium-like states up to $\sqrt{s} = 5.6$ GeV.

Thank you for your attention!