Measurement of the energy dependence of the $e^+e^- \rightarrow B\bar{B}, B\bar{B}^*$, and $B^*\bar{B}^*$ cross sections at Belle II

Sergey Privalov

Budker Institute of Nuclear Physics of SB RAS, Novosibirsk

The 7th International Conference on Particle Physics and Astrophysics, 22-25 October 2024, Moscow

Motivation

Total $e^+e^- \rightarrow b\bar{b}$: peaks of $\Upsilon(4S)$, $\Upsilon(5S)$, and $\Upsilon(6S)$, dips at $B\bar{B}^*$ and $B^*\bar{B}^*$ thresholds and at $\Upsilon(10750)$.

Exclusive cross sections are expected to have more structures. Unitarized Quark Model: minima are due to nodes of the $\Upsilon(4S, 5S, 6S)$ wave functions – information about Υ states. Belle measurement: [R. Mizuk *et al.* [Belle Collaboration], JHEP **06**, 137 (2021)]: oscillatory behavior of exclusive cross sections.

Experimental setup

The SuperKEKB accelerator

The Belle II detector

B-factory with luminosity $\mathcal{L} = 4.71 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

General purpose spectrometer that efficiently collects data of e^+e^- collisions.

Data samples:

E_{cm}, MeV	$\Upsilon(4S)$	10653	10701	10746	10805
L , fb $^{-1}$	35.5	3.5	1.6	9.8	4.7

Reconstruct B mesons in a large number of hadronic final states (\geq 1000). Use automated procedure from Belle II software that includes machine learning for selection. Advantage: higher flexibility.

Identify $e^+e^- \rightarrow B\bar{B}$, $B\bar{B}^*$ and $B^*\bar{B}^*$ using $M_{\rm bc} = \sqrt{(E_{\rm cm}/2)^2 - p_B^2}$, $p_B - B$ meson momentum. Photons from $B^* \rightarrow B\gamma$ are not reconstructed \Rightarrow in $\Delta E = E_B - E_{\rm cm}/2$ the $B^*\bar{B}^{(*)}$ signals are shifted. Rotation: $\Delta E' = \Delta E + M_{\rm bc} - m_B$; all signals peak at zero and have the same shape. Use $\Delta E'$ sidebands to constrain background.

Event selection

Choose MVA input variables that are not correlated with p_B . Monte-Carlo (MC) simulation is used to optimize the selection criteria for variables $|\Delta E'|$ and MVA output. Obtained ratio between efficiencies: $\frac{\varepsilon[\Upsilon(5S)]}{\varepsilon[\Upsilon(4S)]} = 1.032 \pm 0.012.$

Data and simulation show prominent signals after selection.

$M_{\sf bc}$ fit function

Example at $\Upsilon(5S)$:

Fit function is calculated numerically and takes into account: $E_{\rm cm}$ spread, energy dependence of cross section, initial state radiation (ISR), momentum resolution, peaking background, and kinematics of $B^* \to B\gamma$.

 $B^* \rightarrow B\gamma$: distribution in helicity angle is $1 + a_h \cos^2 \theta$. For $B\bar{B}^*$ expect $a_h = 1$, for $B^*\bar{B}^*$ a_h is not fixed. Selected events of MC simulation are divided into three categories:

- true signal: $|\Delta E'| < 18 \ {\rm MeV}, \label{eq:alpha}$ pass truth-matching;
- broken signal: $|\Delta E'| < 18$ MeV, fail truth-mathing;
- $\Delta E'$ sideband: $|\Delta E' - 80 \text{ MeV}| < 18 \text{ MeV}.$

Parameters of the momentum resolutions and ratios between event categories are obtained.

Determination of the efficiency of B reconstruction at $\Upsilon(4S)$

Simultaneous M_{bc} and cross section fit

 $N_{B\bar{B}}$ — total number of $B\bar{B}$ events, measured using the difference between multihadronic events at the $\Upsilon(4S)$ peak and below the $B\bar{B}$ threshold.

$M_{\rm bc}$ fits in scan data

9 / 13

Results

Dressed cross sections are calculated iteratively in sequential simultaneous fits of cross sections' energy dependencies and $M_{\rm bc}$ distributions:

$$\sigma_{\rm dressed}^{\rm (this\ iteration)} = \frac{N}{L\varepsilon(1+\delta_{\rm ISR})^{\rm (previous\ iteration)}}, \label{eq:scalar}$$

N- number of signal events, $\varepsilon-$ linearly changing efficiency, L- integral luminosity, $1+\delta_{\rm ISR}-$ radiative correction.

$\sigma(e^+e^- \to B^*\bar{B}^*) \text{ (pb)}$
$143.6 \pm 8.4 \pm 2.4 \pm 3.3$
$104.0 \pm 4.8 \pm 2.7 \pm 2.4$
$151.4 \pm 13.4 \pm 2.8 \pm 3.4$
$64.5 \pm 6.4 \pm 2.7 \pm 1.4$

Table: dressed cross sections. The first error is statistical, the second is uncorrelated systematic and the third is correlated systematic. Points are in the descending energy order.

Cross sections energy dependence

 $R_b^{\rm dressed}$ and Belle measurements are used to constrain the fits. Rapid rise of $B^*\bar{B}^*$ dressed cross section is observed.

- Non-trivial shape of the cross sections is the result of the transitions between different channels: BB, BB*, and B*B*.
- Bound state of $B^*\bar{B}^*$ 25 MeV below the corresponding threshold.

Conclusion

Exclusive cross sections of $e^+e^- \rightarrow B\bar{B}, B\bar{B}^*, B^*\bar{B}^*$ were measured at 4 energies between 10.65 and 10.80 GeV with total integrated luminosity of 19.7 fb⁻¹ at Belle II. The cross section $e^+e^- \rightarrow B^*\bar{B}^*$ increases very rapidly near the corresponding threshold (possible $B^*\bar{B}^*$ molecular state).

Results are consistent with the Belle measurement. Preprint [arXiv:2405.18928v2 [hep-ex]], accepted by JHEP.