

Measurements of the hadronic cross sections via ISR at Belle II

B.Shwartz, on behalf of BELLE II collaboration

Budker Institute of Nuclear Physics Novosibirsk State University Novosibirsk, Russia

SuperKEKB collider

World record instantaneous luminosity: 4.7×10^{34} /cm²/s

Belle II Detector

Near-hermetic multipurpose detector At SuperKEKB collider

Particle Identification

Aerogel RICH in the forward endcap Time-of-Propagation counter in the barrel K/π ID : K efficiency 90% at 1.8% π fake

7 GeV e⁻

Vertex Detector (VXD)

Inner 2 layers : Pixel Outer 4 layers : Double side strip σ (Track impact parameter) ~ 15 µm

Central Drift Chamber (CDC)

91% of solid angle coverage $\sigma(p_T)/p_T \sim 0.4\% \times p_T$ dE/dx resolution 5% (low-p PID)

e lectror

K-long and Muon Detector (KLM) Alternating iron and detector plates Scintillator / Resistive Plate Chamber Muon ID efficiency 90% at 2% fake

Trigger and DAQ

- L1 Trigger rate 30 kHz (design)
- New trigger line for lowmultiplicity events
- Independent CDC and ECL trigger modes
- Software based HLT

Electromagnetic Calorimeter (ECL)

- CsI(Tl) crystals + Waveform fit
- Electron ID eff. 90% at <0.1% fake
- Energy resolution 1.6-4%
- 94% of solid angle coverage

Belle II physics program

Collected data:

- ~ 362 fb^{-1} at Y(4S)
- 42 fb-1 off-resonance, 60 MeV below Y(4S).
- 19 fb-1 energy scan between 10.6 to 10.8 GeV for exotic hadron studies.

Non-SM probes from semileptonic, radiative, and leptonic B decays

Direct searches for light non-SM physics and Dark Sector studies

Tau lepton physics

Precision CKM tests and searches for non-SM CP violation in B decays

Charm physics

Quarkonium, exotics, and hadron spectroscopy High precision measurements of the hadronic cross section demanded by HVP in muon (g-2) and other precise QCD tests

Muon anomaly, $a_{\mu} = (g-2)_{\mu}/2$: SM calculations and experiment

R measurement – exclusive vs inclusive

"The anomalous magnetic moment of the muon in the Standard Model", T. Aoyama et al., Physics Reports 887 (2020) 1–166.

Energy Scan e^+ e **ISR** e^+ e

 $s' = 2\sqrt{s}E_{ISR}$

ISR photons mostly go at small angles, only about 10% of them are emitted into detector acceptance

HVP measurements at Belle II

In comparison to Belle:

- New low-multiplicity trigger effectively distinguish ISR events from e⁺e⁻ and γγ subjected to prescaling.
- Two independent triggers based on the Tracker and Calorimeter which provide efficiency estimation from the data
- Almost 100% efficiency for energetic ISR

Two channels are under study now.

 $e^+e^- \rightarrow \pi^+\pi^-$

Target 0.5% precision using 363 fb⁻¹data Try to following BaBar methods as a base line

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ Mass range : 0.6-3.5 GeV, Target precision : $\delta a_{\mu}(3\pi) \sim 2\%$ At present the results is published in arXiv:2404.04915 and by PRD and accepted by PRD.

Previous measurements of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Recent measurements:

- Preliminary result from BES III [arXiv:1912.11208]
- BABAR has updated its results with full data [Phys. Rev. D 104, 112003 (2021)]

As for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ contribution $a_{\mu}(3\pi)$, the uncertainty of $a_{\mu}(3\pi)$ is 2-3% for combination and 1.3% for BABAR alone.

• The difference in the cross section between the experiments below 1.1 GeV produces the error.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ analysis

Dataset : 2019-2021 191 fb⁻¹

• Blind analysis

- Study of analysis methods using MC and validation using 10% data.
- Final confirmation under way using full data set.

• Key items

- Trigger
- Background reduction and estimation
- Efficiency corrections
- Unfolding
- Four-vector kinematic fit (4C-KFit)
- Fit to positions and momenta
- Constrain to initial e⁺e⁻ four-momentum
- > Select small χ^2 to extract signal-like event

Event selection

Two tracks $+ \ge$ three photons : $e^+e^- \rightarrow \pi^+\pi^-\pi^0 \gamma_{ISR} \rightarrow \pi^+\pi^-\gamma\gamma\gamma_{ISR}$ Tracks : dr < 0.5 cm and |dz| < 2 cm and $p_T > 0.2$ GeV/c Photons : E > 100 MeV + at least one photon must be energetic ISR (E^{CMS}> 2 GeV in barrel ECL) π^0 reconstruction

Invariant mass of two photons within 0.123-0.147 GeV/c² $\chi^{2}_{4C}(3\pi\gamma) < 50$ is used for the cross section measurement

Background suppression

9

Belle II Simulation

Non-ISR gabar

— π⁺π⁻π⁰γ

Background estimation

✓ By a mass-dependent data/MC ratio factor on the base of a control samples. ✓ $e^+e^- \rightarrow K^+K^-\pi^0\gamma$: Invert π/K -ID $L(\pi/K) > 0.1 \Rightarrow L(\pi/K) < 0.1$ ✓ $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$: Reconstruct $\pi^+\pi^-\pi^0\pi^0\gamma$ and select $\chi^2(4\pi\gamma) < 30$ ✓ Non-ISR qqbar : $0.10 < M(\gamma_{ISR}\gamma) < 0.17$ GeV / large cluster second moment

Signal extraction after event selection

• The signal is estimated by fit of $M(\gamma\gamma)$ in each $M(3\pi)$ bin, in the 0.123-0.147 GeV/c mass range by sum of the signal peak and polynomial combinatorial background

Detection efficiency is estimated first using MC of the x20 larger statistics.

Possible differences between data and MC are checked using data.

Main items important in this analysis:

- Trigger efficiency
- High energy photon detection efficiency
- Tracking efficiency
- π^0 efficiency •
- χ^2 selection
- Background reduction cut efficiency

$M(\gamma\gamma)$ fit in one $M(3\pi)$ bin Entries per 0.5 MeV/c² Belle II 250 Ldt = 191 fb⁻¹ 0.7825 < M(3π) < 0.7850 GeV/c 200 150

100

50

Pull

Unfolding

- The background-subtracted spectrum is unfolded to take into account the effect of detector response and final-state radiation.
- The data-MC resolution difference is determined by a Gaussian convolution fit to the ω , Φ , and J/ ψ resonances.
 - The agreement is good typically with a mass resolution around 7-10 MeV.

Efficiency and Systematic uncertainty

$$\sigma_{ee \to 3\pi} M_i = \frac{N_{i,unfolded}}{\varepsilon(M_i) \cdot L_{eff}(M_i) \cdot (1 + \delta_{rad})}$$

Efficiency $\varepsilon = \varepsilon_{MK} \Pi (1 + \delta_i)$ Data- MC correction $\delta_i \sim O(1)\%$			Source Systematic uncertainty (%)			
Source	Efficiency 1.05 GeV/c2	$f(x) = \frac{1.05 \text{ GeV/c2}}{M > 1.05 \text{ GeV/c2}}$ $-0.1 \pm 0.1 + 0.2 \pm 0.7 + 0.2 \pm 0.7 + 0.7 \pm 0.8 + 0.1.4 \pm 1.0 + 0.3 \pm 0.3 \pm 0.3 \pm 0.3 + 0.3 \pm 0$	 <1 Trigger efficiency ISR photon efficiency Tracking efficiency π⁰ efficiency χ2 criteria efficiency Background suppression efficiency MC generator Radiative correction Integrated luminosity 	<1.05 Ge 0.7	V >1.05 0.1 0.7	GeV 0.2
Trigger ISR photon detection Tracking π ⁰ detection Background suppress χ2 distribution MC generator	$\begin{array}{r} -0.1 \pm 0.1 \\ +0.2 \pm 0.7 \\ -1.4 \pm 0.8 \\ -1.4 \pm 1.0 \\ \text{sion} -1.9 \pm 0.2 \\ 0.0 \pm 0.6 \\ 0.0 \pm 1.2 \end{array}$			0.8 1.0 0.6 ion 0.2 1.2 0.5 0.6	0.8 1.0 0.3 1.9 1.2 0.5 0.6	
Total correction	-4.6±2.0	-4.6±2.0 ICPPA 2024	Total systematics	2.2	2.8	13

Result: cross section below 1.05 GeV

Result: cross section above 1.05 GeV

Good agreement with BABAR result

3π contribution to a_{μ} HVP

 a_{μ} (LO,HVP, 3π [0.62- 1.8 GeV]) = (48.91 ± 0.25stat ± 1.07syst) ×10⁻¹⁰

BABAR alone [PRD104 11 (2021)] 45.86±0.14±0.58 -3.2±1.3 (6.9%) Global fit [JHEP08 208 (2023)] 45.91±0.37±0.38 -3.0±1.2 (6.5%)

Source	Systematic uncertainty (%)
Efficiency corrections	1.63
Monte Carlo generator	1.20
Integrated luminosity	0.64
Simulated sample size	0.15
Background subtraction	0.02
Unfolding	0.12
Radiative corrections	0.50
Vacuum polarization corrections	0.04
Total	2.19

6.5% higher than the global fit result with 2.5 σ significance This difference $3x10^{-10}$ corresponds 10% of $\Delta a_{\mu} = a_{\mu}(Exp) - a_{\mu}(SM) = 25x10^{-10}$

Conclusion

Belle II has collected 531 fb⁻¹ data.

World record instantaneous luminosity: 4.7×10^{34} /cm²/s

- Measurements related to muon g-2 are active and in progress at Belle II.
- ✤ Good trigger efficiency thanks to the upgrade is confirmed
- ★ The e⁺e⁻ → $\pi^+\pi^-\pi^0$ cross section has been measured with systematic uncertainty of 2.2%
- The largest uncertainty arises from NLO/NNLO calculation in MC generator
- \clubsuit Our results are about 2.5 σ greater than BABAR and global fit
- The paper is released in arXiv:2404.04915 and accepted by PRD for publication
- Other channels analyses are expected

Back up

Signal efficiency and data-MC corrections

Efficiency $\varepsilon = \varepsilon_{MK} \Pi (1 + \delta_i)$ Data-MC correction $\delta_i \sim O(1)\%$

Tracking efficiency

Tracking efficiency for pions is studied with the $e_{+}e_{-}\rightarrow \tau_{+}\tau_{-}$ process. \Box Data-MC differences are confirmed to be small with 0.3% uncertainty per track.

Data-MC discrepancy of tracking efficiency

Tracking efficiency: Track loss

Track loss due to shared hits on the drift chamber is confirmed using the e+e- $\rightarrow \pi$ + π - π 0 γ

$$\Box$$
 Define $\Delta \varphi \coloneqq \varphi \pi + - \varphi(\pi -)$

 $\Delta \phi < 0$

- □ The Inefficiency due to track loss is given by
- \square The track loss is 5.0% in data and 4.0% in MC
- \Box In total, the correction factor of tracking is $(-1.4\pm0.8)\%$.
- □ Dependency on no. of CDC hits and duplicated tracks are also studied.

 $f = N \Delta \varphi < 0 - N \Delta \varphi > 0 2N \Delta \varphi < 0$

Trigger efficiency

- ISR events are triggered by the calorimeter
 The efficiency can be measured by using the events triggered independently by the tracker
 Efficiency for energetic ISR in barrel region: 99.9%
 The uncertainty related is small, 0.1%
 This also benefits other final-state measurements
- Belle II trigger efficiency measured by μμγ (data) CMS ISR Energy (GeV)
- ECL e- e+ CDC $\theta \mu$ + μ ISR photon in barrel
- \rightarrow Reference: triggered by track trigger
- \rightarrow Probe: fire energy trigger

ISR photon detection efficiency

Photon detection efficiency is measured using $e_{+}e_{-}\rightarrow\mu_{+}\mu_{-}\gamma$ events \Box Taking a match between a ECL cluster and the missing momentum of dimuon system \Box Efficiency is in good agreement with 0.7% systematic uncertainty

x2 selection efficiency

 \Box ISR and tracks $\chi_2\text{-criteria}$ efficiency is confirmed using $e{+}e{-}{\rightarrow}\mu{+}\mu{-}\gamma$ sample

□ Confirm effects from differences in position, momentum, and energy of ISR and tracks

Agreement confirmed within ±0.6% uncertainty
 Dependence on multi-ISR photon calculations is discussed on the next page

π^0 efficiency correction

Accurate evaluation of π_0 efficiency in e+e- experiment is a challenging task.

- \Box Exclusive processes that include a π_0 are limited.
- \Box Evaluate efficiency using the e+e- $\rightarrow \omega\gamma \rightarrow \pi$ + π - $\pi_0\gamma$ events.
- **Π- Recoil momentum of** π+π-γISR

π+ e- e+ ISR photon

 $\varepsilon_{\pi 0} = N$ Full reconstruction : $\gamma_{ISR}\pi + \pi - \pi_0$ N Partial reconstruction : $\gamma_{ISR}\pi + \pi - \text{Count }\omega \rightarrow \pi + \pi - \pi_0$ decay without using π_0 information.

$$M_2 \pi_+ \pi_- \pi_{\text{recoil 0}} = p_{\pi_+} + p_{\pi_-} + p_{\text{recoil 2}}$$

Count by reconstructing π_0 and fitting M($\gamma\gamma$)

 $\Box \varepsilon_{\pi 0}$ are independently evaluated by the data and MC $\Box Data/MC$ ratio = 0.986 ± 0.006_{stat}

□ The systematic uncertainty related to $π_0$ is 1.0% □ The uncertainty is evaluated by variations of the M(γγ) signal pdf, background pdfs, and selections

 \Box π_0 momentum p_{recoil} is determined by kinematic fit to $\pi_+\pi_-\gamma$ with hypothesis that recoil mass equals π_0 mass

Higher-order ISR effects

Although a one-ISR photon emission process is set as the signal,
in reality there are processes with multiple photon emissions.
Two effects need to be considered from the existence of multiple photons:
A) Effective integrated luminosity *L*eff (radiative correction): 0.5% unc.
B) χ2 selection efficiency due to ISR photon calculations in generator: 1.2% unc.

