ICPPA 2024

Study of B_c⁺ decays at CMS

Alexander Kolov^{1, 2}

1 – LPI RAS 2 – NRNU MEPhI

Outline

- Motivation
- Previous results
- Data and simulation
- Preselection
- Cut optimization
- MC signal and background shape
- Data fit result
- Efficiencies
- Branching fraction ratio measurement
- Summary

Motivation

• Probability ratios of similar decays, such as the twoparticle decays of ground states of b hadrons at the $[\psi(2S) h]$ and $[J/\psi h]$, where h is a light hadron, have been measured quite accurately. Comparing the ratios, we can see that for <u>the B_c meson the ratio R stands</u> <u>out from the general pattern</u>.

The reason is probably related to the internal dynamics of B_c decay. Measuring branching fractions of b hadrons allows us to test the predictions and approaches of theoretical models used in the calculation of the decays.

- The decay was discovered in the LHCb experiment. The first result for R was based on data from RunI. The second LHCb measurement was obtained using both RunI and RunII data (with unc. ~7.4%).
- Our interest is to confirm or refute this observation in a new, independent measurement, and to improve the accuracy of the world average value.

LHCb results

RunI and RunII data

• Data

 $--- \text{Total fit} \\ B_c^+ \to \psi(2S)\pi^+$

 $\cdots B_c^+ \rightarrow \psi(2S)K^+$

 $---- B_c^+ \rightarrow \psi(2S)\rho^+$

····· Combinatorial

6600

• Data

— Total fit

 $B_c^+ \rightarrow J/\psi \pi^+$

 $\cdots B_c^+ \rightarrow J/\psi K^+$

 $R_{\psi(2S)/J/\psi} = 0.254 \pm 0.018 \text{ (stat)} \pm 0.003 \text{ (syst)} \pm 0.005 \text{ (BF)}$

6400

 $m(\psi(2S)\pi^+)$ [MeV]

Full RunII (2016-2018) and RunIII (2022-2033) experimental data is used

3. Normalizing channel $\mathbf{B}_{c}^{\pm} \rightarrow J/\psi \ \pi^{\pm}$ where $J/\psi \rightarrow \mu^{+}\mu^{-}$

Simulation

The BCVEGPY generator, which is interfaced to the PYTHIA parton shower and hadronization model, is used to simulate charmed B meson production. The B hadron decays are modelled with EVTGEN. Final-state radiation is included in EVTGEN using PHOTOS. The events are then passed through a detailed GEANT4-based simulation of the CMS detector and the same trigger and reconstruction algorithms used on data. The simulation includes additional interactions due to additional pp collisions in each bunch crossing (pileup).

- $B_c^+ \rightarrow \psi(2S) \pi^+ [\psi(2S) \rightarrow J/\psi \pi^+ \pi^-]$ MC samples:
 - Forced decays:

$$\begin{split} & \begin{bmatrix} B_c^+ \rightarrow \psi(2S) \, \pi^+, \psi(2S) \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \mu^+ \mu^- \ [70.8\%] \end{bmatrix} \\ & (\text{PHOTOS SVS, VVPIPI, PHOTOS VLL models, respectively}) \\ & B_c^+ \rightarrow \psi(2S) \, \pi^+, \psi(2S) \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \mu^+ \mu^- \ [5.6\%] \\ & (\text{PHOTOS SVS, VVPIPI, PHOTOS VLL models, respectively}) \\ & B_c^+ \rightarrow \psi(2S) \, \pi^+, \psi(2S) \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow \mu^+ \mu^- \ [23.6\%] \\ & (\text{PHOTOS SVV_HELAMP, VVPIPI, PHOTOS VLL models, respectively}) \end{split}$$

- $B_c^+ \rightarrow \psi(2S) \pi^+ [\psi(2S) \rightarrow \mu^+ \mu^-]$ MC samples:
 - Forced decays:

 $\begin{array}{l} \left(\begin{array}{c} B_{c}^{+} \rightarrow \psi(2S) \, \pi^{+}, \psi(2S) \rightarrow \mu^{+} \mu^{-} \left[70.8\% \right] \right) \\ (\text{PHOTOS SVS, PHOTOS VLL models, respectively}) \\ B_{c}^{+} \rightarrow \psi(2S) \, \pi^{+}, \psi(2S) \rightarrow \mu^{+} \mu^{-} \left[5.6\% \right] \\ (\text{PHOTOS SVS, PHOTOS VLL models, respectively}) \\ B_{c}^{+} \rightarrow \psi(2S) \, \pi^{+}, \psi(2S) \rightarrow \mu^{+} \mu^{-} \left[23.6\% \right] \\ (\text{PHOTOS SVV_HELAMP, PHOTOS VLL models, respectively}) \end{array}$

- $B_c^+ \rightarrow J/\psi \pi^+$ MC samples:
 - Forced decays:

 $\begin{array}{c} \left[\begin{array}{c} B_{c}^{+} \rightarrow J/\psi \pi^{+}, J/\psi \rightarrow \mu^{+}\mu^{-} \left[70.8\%\right]\right] \\ (PHOTOS SVS, PHOTOS VLL models, respectively) \\ B_{c}^{+} \rightarrow J/\psi \pi^{+}, J/\psi \rightarrow \mu^{+}\mu^{-} \left[5.6\%\right] \\ (PHOTOS SVS, PHOTOS VLL models, respectively) \\ B_{c}^{+} \rightarrow J/\psi \rho^{+}, J/\psi \rightarrow \mu^{+}\mu^{-}, \rho^{+} \rightarrow \pi^{+}\pi^{0} \left[23.6\%\right] \\ (PHOTOS SVV_HELAMP, PHOTOS VLL models, respectively) \end{array}$

Preselection

- Standard B physics analysis preselection is performed.
- Used 2016-2018 datasets RunII data and 2022-2023 RunIII data. Trigger optimized to select μμ + *track* for RunII and μμ for RunIII in final state. Muons are matched to the trigger.
- B_c meson vertex required to be displaced from the PV in the transverse (XY) plane
- PV is selected by the smallest angle between B_c meson momentum and the straight line passing through PV and B_c decay vertex
- B_c meson momentum required to point to the PV in the XY plane
- $\Psi(2S)$ (or J/ ψ) is result of $\mu\mu$ vertex fit with mass constraint
- The normalization channel is chosen according to the similar decay topology to reduce the systematic uncertainties.

B_c^+ mass distributions after preselection

Optimization of selection criteria

- Serial scans on variables were performed to find optimal value of cut by maximizing *f* value
- When *f* achieves the maximum value corresponding cut is fixed, and its value is used in next scans
- When iteration shows the same result as previous one the procedure of optimization is considered to be completed

Punzi figure of merit is used for the optimization:

$$f = S/(\frac{463}{13} + 4\sqrt{B} + 5\sqrt{25 + 8\sqrt{B} + 4B})$$

- **S** is number of signal events from simulation
- **B** is expected number of background events. The data from the experiment is used, the region $m_{PDG}(Bc) \pm \sim 3\sigma_{eff}$ is excluded from the fit. The integral in the excluded region is **B**.

Optimization of selection criteria

Variables to have been optimized

- $p_T(B_c)$
- $p_T(\psi(2S))$ and/or $p_T(J/\psi)$
- $p_T(\pi^{\pm})$ from **B**_c
- $L_{XY} / \sigma_{L_{XY}} (B_{c}, PV)$ The events
- $P_{vtx}(B_c)$
- IPS(π^{\pm} , PV)
- $-\lg(1 \cos(\overrightarrow{L_{XY}}, \overrightarrow{p_T})(B_c))$
- for $\mathbf{B}_c^+ \rightarrow \psi(2S)[\psi(2S) \rightarrow J/\psi \ \pi^+\pi^-] \ \pi^+$
- $m(\pi^+\pi^-)$ from $\psi(2S)$
- $m(\psi(2S))$

MC signal shape

Student T function is used as signal shape

24.10.2024

MC background shape

Normalizing channel fit RunII

 $B_c^+ \rightarrow J/\psi[J/\psi \rightarrow \mu^+\mu^-] \pi^+$

24.10.2024

Bkg: exponent + Johnson^{part. reco} + Johnson^{refl.} Johnson^{refl.}: shape fixed to MC and normalization fixed to branching fractions ratio and gen. efficiencies Johnson^{part. reco} : fixed shape to MC

Signal channels fit RunII

Bkg: exponent + Johnson^{part. reco} + Johnson^{refl.} Johnson^{refl.}: shape fixed to MC and normalization fixed to branching fractions ratio and gen. efficiencies Johnson^{part. reco} : fixed shape to MC

14

24.10.2024

Normalizing channel fit **RunIII** $B_c^+ \rightarrow J/\psi[J/\psi \rightarrow \mu^+\mu^-] \pi^+$

Bkg: exponent + Johnson^{part. reco}

Johnson^{part. reco} : fixed shape to MC

24.10.2024

Signal channels fit RunIII

Bkg: exponent + Johnson^{part. reco} **Johnson**^{part. reco} : fixed shape to MC

24.10.2024

Efficiencies: generator filter and selection

- Generator filter efficiency is an efficiency of soft requirements applied at the generator level on the transverse momentum and abseta of generated particles. It is a fraction of generated events that pass these requirements.
- **Reconstruction and selection efficiency** is the ratio of the number of reconstructed in MC events (after all cuts) to the number of generated events.

$$\epsilon = \epsilon_{gen} \times \epsilon_{reco\&sel} = \frac{N_{gen,filtered}}{N_{gen,unfiltered}} \times \frac{N_{reco}}{N_{gen-DAS}}$$

Efficiencies ratio is multiplied by a random value for analysis to be blind.

Measurement of branching fractions ratio **RunII** $B_c^+ \rightarrow \psi(2S)[\psi(2S) \rightarrow \mu^+ \mu^-] \pi^+$

$$\mathcal{R}_{1} \equiv \frac{\mathcal{B}(\mathbf{B}_{\mathbf{c}}^{+} \to \psi(2\mathbf{S})\pi^{+})}{\mathcal{B}(\mathbf{B}_{\mathbf{c}}^{+} \to \mathbf{J}/\psi\pi^{+})} = \frac{N(\mathbf{B}_{\mathbf{c}}^{+} \to \psi(2\mathbf{S})\pi^{+})}{N(\mathbf{B}_{\mathbf{c}}^{+} \to \mathbf{J}/\psi\pi^{+})} \frac{\epsilon_{\mathbf{J}/\psi\pi^{+}}}{\epsilon_{\psi(2\mathbf{S})\pi^{+}}} \times \frac{\mathcal{B}(\mathbf{J}/\psi \to \mu^{+}\mu^{-})}{\mathcal{B}(\psi(2\mathbf{S}) \to \mu^{+}\mu^{-})}$$

Baseline

					Sourco	Uncortainty (%)
Signal	Comb. bkg	Refl.	Part. reco			Uncertainty (76)
	T	т 1	т 1		Signal model	0.8
StudentT	Exp	Johnson	i Johnson		Comb. bkg model	0.2
					Refl. model	2.6
Statistic unc.			Pa Si	Part. reco model	0.9	
				Signal model (normalizing)	1.1	
Signal	7.6%				Comb. bkg model (normalizing)	0.2
Normalizing 1.4%				Refl. model (normalizing)	1.3	
			Part. reco model (normalizing)	0.4		
					Limited size of MC samples	0.9
Total unc. 13.8%					Trigger efficiency	0.0

Branching unc. ~8%

Total

LHCb result: $R_{\psi(2S)/J/\psi} = 0.254 \pm 0.018 \,(\text{stat}) \pm 0.003 \,(\text{syst}) \pm 0.005 \,(\text{BF})$

3.5

I In contain try (0/)

Measurement of branching fractions ratio RunII B_c⁺ $\rightarrow \psi(2S)[\psi(2S) \rightarrow J/\psi \pi^{+}\pi^{-}] \pi^{+}$

$$\mathcal{R}_{2} \equiv \frac{\mathcal{B}(\mathbf{B}_{c}^{+} \to \psi(2\mathbf{S})\pi^{+})}{\mathcal{B}(\mathbf{B}_{c}^{+} \to \mathbf{J}/\psi\pi^{+})} = \frac{N(\mathbf{B}_{c}^{+} \to \psi(2\mathbf{S})\pi^{+})}{N(\mathbf{B}_{c}^{+} \to \mathbf{J}/\psi\pi^{+})} \frac{\epsilon_{\mathbf{J}/\psi\pi^{+}}}{\epsilon_{\psi(2\mathbf{S})\pi^{+}}} \times \frac{1}{\mathcal{B}(\psi(2\mathbf{S}) \to \mathbf{J}/\psi\pi^{+}\pi^{-})}$$

Signal	Comb. bkg	Refl.	Part. reco
StudentT	Exp	Johnson	Johnson
Statistic und	с.		
Signal	10.6%		

Branching unc. ~1%

Source	Uncertainty (%)
Signal model	0.9
Comb. bkg model	1.0
Refl. model	3.4
Part. reco model	1.0
Signal model (normalizing)	1.3
Comb. bkg model (normalizing)	0.5
Refl. model (normalizing)	0.7
Part. reco model (normalizing)	2.9
Limited size of MC samples	1.2
Tracking efficiency	4.2
Total	6.7

Normalizing 1.7%

Total unc. <u>12.5%</u>

LHCb result: $R_{\psi(2S)/J/\psi} = 0.254 \pm 0.018 \,(\text{stat}) \pm 0.003 \,(\text{syst}) \pm 0.005 \,(\text{BF})$

Summary

- Processing full RunII and RunIII data
- Simulation
- Cuts optimization with Punzi FOM
- Signal and background shapes
- Efficiencies
- Results for branching fractions ratios

Plans

- Systematic uncertainties
- RunIII data

The end.

Back up

 B_c^+

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass $m = 6274.47 \pm 0.32$ MeV $m_{B_c^+} - m_{B_s^0} = 907.8 \pm 0.5$ MeV Mean life $\tau = (0.510 \pm 0.009) \times 10^{-12}$ s

Variables

The variables were selected taking into account the decay process topology. The lifetime of B_c^+ is big enough for a noticeable flight distance from its production vertices.

The designation used in the Table 1 and initial selection criteria lists are described below:

- Distance significance $L_{xy} / \sigma_{L_{xy}} (\mathbf{B}_{c}^{+} PV)$
- Cosine between particle momentum and the straight line passing through birth vertex and decay vertex $cos(\overrightarrow{L_{xy}}, \overrightarrow{p_T})(B_c^+ PV)$
- Transverse momentum pions with index are sorted according to its *p*_T and mother particle (e.g. π[±]₁ is the particle with the highest *p*_T among pions from ψ(2S) → J/ψπ⁺π⁻ decay, π[±]₃ or π[±] is a pion from B⁺_c decay)
- Vertex fit probability $P_{vtx}(J/\psi)$
- Two-dimensional impact parameter significance of daughter particle $IPS(\pi^+_B_c^+)$

Variables // Preselection

The initial selection criteria are: Decay $B_c^+ \rightarrow \psi(2S) \pi^+ [\psi(2S) \rightarrow \mu^+ \mu^-]$

- $3500 \,\mathrm{MeV} < M(\psi(2S)) < 4050 \,\mathrm{MeV}$
- $L_{xy} / \sigma_{L_{xy}} (\mathbf{B}^+_{\mathbf{c}} PV) > 3$
- $cos(\overrightarrow{L_{xy'}}, \overrightarrow{p_T})(B_c^+ PV) > 0.99$
- $P_{vtx}(\mathbf{B}_{\mathrm{c}}^{+}) > 5\%$, $P_{vtx}(\mathbf{J}/\psi) > 5\%$
- $p_{\rm T}({\rm B_c^+}) > 8\,{\rm GeV}, p_{\rm T}(\psi(2{\rm S})) > 7\,{\rm GeV}, p_{\rm T}(\pi^{\pm}_{3}) > 1.2\,{\rm GeV}, p_{\rm T}(\mu^{\pm}) > 4.0\,{\rm GeV}$
- $|\eta(\pi^{\pm})| < 2.4, |\eta(\mu^{\pm})| < 2.4$

Decay $B_c^+ \rightarrow \psi(2S) \pi^+ [\psi(2S) \rightarrow J/\psi \pi^+ \pi^-]$

- $3670 \,\mathrm{MeV} < M(\psi(2S)) < 3705 \,\mathrm{MeV}$
- $L_{xy} / \sigma_{L_{xy}} (\mathbf{B}_{c}^{+} PV) > 3$
- $cos(\overrightarrow{L_{xy}}, \overrightarrow{p_{T}})(B_{c}^{+}PV) > 0.99$
- $P_{vtx}(B_c^+) > 5\%$, $p_T(J/\psi) > 7 \text{ GeV}$, $P_{vtx}(J/\psi) > 5\%$
- $p_{\rm T}({\rm B_c^+}) > 8\,{\rm GeV}, p_{\rm T}(\pi^{\pm}_{3(1,2)}) > 1.2(0.6)\,{\rm GeV}, p_{\rm T}(\mu^{\pm}) > 4.0\,{\rm GeV}$
- $|\eta(\pi^{\pm})| < 2.4, |\eta(\mu^{\pm})| < 2.4$
- Opposite charge of pion candidates from $\psi(2S)$ decay

Decay $B_c^+ \rightarrow J/\psi \pi^+$

- 2900 MeV $< M(J/\psi) < 3300$ MeV
- $L_{xy} / \sigma_{L_{xy}} (B_c^+ PV) > 3$
- $cos(\overrightarrow{L_{xy}}, \overrightarrow{p_{T}})(B_{c}^{+}PV) > 0.99$
- $P_{vtx}(\mathbf{B}_{\mathbf{c}}^{+}) > 5\%$, $P_{vtx}(\mathbf{J}/\psi) > 5\%$
- $p_{\rm T}({\rm B_c^+}) > 8\,{\rm GeV}, p_{\rm T}({\rm J}/\psi) > 7\,{\rm GeV}, p_{\rm T}({\pi^\pm}_3) > 1.2\,{\rm GeV}, p_{\rm T}(\mu^\pm) > 4.0\,{\rm GeV}$
- $|\eta(\pi^{\pm})| < 2.4, |\eta(\mu^{\pm})| < 2.4$

Optimized

Variable	$\mid \mathrm{B_{c}^{+}} \rightarrow \psi(\mathrm{2S}) \pi^{+} [\psi(\mathrm{2S}) \rightarrow \mathrm{J}/\psi \pi^{+} \pi^{-}]$	$ $ $B_c^+ \rightarrow J/\psi \pi^+$
$ M(\psi(2S)) - M(\psi(2S)) $, MeV	< 10	
$p_{\rm T}$ (B _c ⁺), GeV	> 13.5	> 13.5
$L_{xy}/\sigma_{L_{xy}}(B_c^+ PV)$	> 8.2	> 8.2
P_{vtx} (J/ $\dot{\psi}$)	> 0.05	
P_{vtx} (B _c ⁺)	> 0.23	> 0.23
$\lg cos(\overrightarrow{L_{xy'}}, \overrightarrow{p_{\rm T}})({\rm B}^+_{\rm c} PV)$	> 3.2	> 3.2
$p_{\rm T} (\pi^+ {}_3)$, GeV	> 2.6	> 2.6
p_{T} ($\psi(\mathrm{2S})$), GeV	> 9.0	> 7.0
$p_{\rm T}$ (J/ ψ), GeV	> 7.0	
$p_{\mathrm{T}}(\pi_1)$, GeV	> 0.8	
$p_{\mathrm{T}}(\pi_2)$, GeV	> 0.4	
$IPS(\pi_{1,2})$	> 0.0	
$IPS(\pi_3)$	> 4.6	> 4.6
$M(\pi_1\pi_2)$, GeV	> 0.37	
$M(\pi_1\pi_2)$, GeV	< 0.6	
$p_{\rm T}(\mu^{\pm})$, GeV	> 4.0	> 4.0
Variable	$B_{c}^{+} \rightarrow \psi(2S)\pi^{+}[\psi(2S) \rightarrow \mu^{+}\mu^{-}]$	$B_c^+ \rightarrow J/\psi \pi^+$
$p_{\rm T}$ (B _c ⁺), GeV	> 9.5	> 9.5
$L_{xy} / \sigma_{L_{xy}} (B_c^+ PV)$	> 5.2	> 5.2
$P_{vtx}(\psi(2S))$	> 0.05	> 0.05
P_{vtx} (B ⁺ _c)	> 0.25	> 0.25
$p_{\mathrm{T}}\left(\pi^{+} ight)$, GeV	> 2.0	> 2.0
$\lg cos(\overrightarrow{L_{xy'}}, \overrightarrow{p_{\rm T}})({\rm B}_{\rm c}^+ PV)$	> 2.7	> 2.7
$p_{\mathrm{T}} (\psi(2\check{\mathrm{S}})), \mathrm{GeV}$	> 7.0	> 7.0
$IPS(\pi^+_B_c^+)$	> 3.1	> 3.1
$p_{\mathrm{T}}~(\mu^{\pm})$, GeV	> 4.0	> 4.0

Baseline

Signal	Comb. bkg	Refl.	Part. reco
StudentT	Exp	Johnson	Johnson

The uncertainty related to the finite size of MC samples is considered as systematic uncertainty. They are taken from the efficiency ratios in Section 6, $\Delta_{\vartheta 1}/\vartheta_1 = 0.9\% for \mathcal{R}_1$ and $\Delta_{\vartheta 2}/\vartheta_2 = 1.2\%$ for \mathcal{R}_2 .

Since we have two additional tracks in $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ channel we add 4.2% uncertainty to systematics due to two-track reconstruction efficiency [?].

In all of the signal and background shapes variations one model changes and the other ones are fixed to the baseline. The result oof the model variation is shown in table

Signal Hypothesis Variation Function Johnson (signal) 2 Gaussian (signal) 3 Gaussian (signal) Johnson (normalizing) 2 Gaussian (normalizing)

3 Gaussian (normalizing)

Background Hypothesis Variation Function

1-degree polynimial (signal)
 2-degree polynimial (signal)
 1-degree polynimial (normalizing)
 2-degree polynimial (normalizing)

Reflection Hypothesis Variation

Function Johnson (signal) No contribution (signal) Johnson (normalizing) No contribution (normalizing)

Part. Reconstructed Hypothesis Variation

Function Crystall Ball (signal) Crystall Ball × Gaussian (signal) Argus (signal) ARGUS × Gaussian (signal) Crystall Ball (normalizing) Crystall Ball × Gaussian (normalizing) Argus (normalizing) ARGUS × Gaussian (normalizing)

Channels

- 1. $B_c^{\pm} \rightarrow \psi(2S) \pi^{\pm}$ where $\psi(2S) \rightarrow \mu^+ \mu^-$
- 2. $B_c^{\pm} \rightarrow \psi(2S) \pi^{\pm}$ where $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$
- 3. Normalizing channel $B_c^{\pm} \rightarrow J/\psi \pi^{\pm}$ where $J/\psi \rightarrow \mu^+\mu^-$

Full RunII(2016-2018) experimental data is used:

/Charmonium/Run2016B-ver2_HIPM_UL2016_MiniAODv2-v1/MINIAOD /Charmonium/Run2016C-HIPM_UL2016_MiniAODv2-v1/MINIAOD /Charmonium/Run2016D-HIPM_UL2016_MiniAODv2-v1/MINIAOD /Charmonium/Run2016E-HIPM_UL2016_MiniAODv2-v1/MINIAOD /Charmonium/Run2016F-HIPM_UL2016_MiniAODv2-v1/MINIAOD /Charmonium/Run2016F-UL2016_MiniAODv2-v1/MINIAOD /Charmonium/Run2016G-UL2016_MiniAODv2-v1/MINIAOD /Charmonium/Run2016H-UL2016_MiniAODv2-v2/MINIAOD

/Charmonium/Run2017B-UL2017_MiniAODv2-v1/MINIAOD /Charmonium/Run2017C-UL2017_MiniAODv2-v1/MINIAOD /Charmonium/Run2017D-UL2017_MiniAODv2-v1/MINIAOD /Charmonium/Run2017E-UL2017_MiniAODv2-v1/MINIAOD /Charmonium/Run2017F-UL2017_MiniAODv2-v1/MINIAOD

/Charmonium/Run2018A-UL2018_MiniAODv2-v1/MINIAOD /Charmonium/Run2018B-UL2018_MiniAODv2-v1/MINIAOD /Charmonium/Run2018C-UL2018_MiniAODv2-v1/MINIAOD /Charmonium/Run2018D-UL2018_MiniAODv2-v1/MINIAOD

MC samples

- 1. $B_c^+ \rightarrow \psi(2S)[\psi(2S) \rightarrow \mu^+\mu^-] \pi^+$
 - $\bullet \ /BcToPsi2SPi_PMM_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL16MiniAODAPVv2-106X_mcRun2_asymptotic_preVFP_v11-v2/MINIAODSIMProvember 2001.$
 - $\bullet \ /BcToPsi2SPi_PMM_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL16MiniAODv2-106X_mcRun2_asymptotic_v17-v2/MINIAODSIMProductions and the set of the set of$
 - /BcToPsi2SPi_PMM_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v2/MINIAODSIM
 - /BcToPsi2SPi_PMM_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL18MiniAODv2-106X_upgrade2018_realistic_v16_L1v1-v2/MINIAODSIM

2. $B_c^+ \rightarrow \psi(2S)[\psi(2S) \rightarrow J/\psi \pi^+\pi^-] \pi^+$

- /BcToPsi2SPi_PJPP_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL16MiniAODAPVv2-106X_mcRun2_asymptotic_preVFP_v11-v3/MINIAODSIM
- /BcToPsi2SPi_PJPP_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL16MiniAODv2-106X_mcRun2_asymptotic_v17-v2/MINIAODSIM
- /BcToPsi2SPi_PJPP_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v2/MINIAODSIM
- /BcToPsi2SPi_PJPP_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL18MiniAODv2-106X_upgrade2018_realistic_v16_L1v1-v2/MINIAODSIM

3. Normalizing channel $B_c^+ \rightarrow J/\psi[J/\psi \rightarrow \mu^+\mu^-] \pi^+$

- /BcToJpsPi_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL16MiniAODAPVv2-106X_mcRun2_asymptotic_preVFP_v11_ext1-v2/MINIAODSIM
- $\label{eq:constraint} bcvegpy2-pythia8-evtgen/RunIISummer20UL16MiniAODv2-106X_mcRun2_asymptotic_v17_ext1-v2/MINIAODSIM-production_v14_ext1-v2/MINIAODSIM-production_v14_ext1-v2/MINIAODSIM-production_v14_ext1-v2/MINIAODSIM-production_v14_ext1-v2/MINIAODSIM-production_v14_ext1-v2/MINIAODSIM-production_v14_ext1-v2/mINIAODSIM-production_v14_ext1-v$
- /BcToJpsPi_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9_ext1-v2/MINIAODSIM
- /BcToJpsPi_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen/RunIISummer20UL18MiniAODv2-106X_upgrade2018_realistic_v16_L1v1_ext1-v2/MINIAODSIM

Psi->Jpsi Pi Pi

