Measurement of the inclusive branching fractions for B_s decays into D mesons

Murad Yasaveev

Higher School of Economics

The 7th International Conference on Particle Physics and Astrophysics, 24 October 2024

Decays of B_s mesons provide a powerful tool for:

- studying strong interactions at low energy;
- measuring parameters of the Standard Model;
- searching for New Physics phenomena.

Sources of B_s mesons:

• high energy hadron collisions (Tevatrone, LHC);

•
$$e^+e^-
ightarrow \Upsilon(5S)
ightarrow B^{(*)}_s ar{B}^{(*)}_s$$
 (KEKB).

 f_s – the B_s^0 production fraction at the $\Upsilon(5S)$ energy.

 $\mathcal{B}(\Upsilon(5S) \to D_s^{\pm}X)/2 = f_s \cdot \mathcal{B}(B_s^0 \to D_s^{\pm}X) + (1 - f_s - f_{bot}) \cdot \mathcal{B}(B \to D_s^{\pm}X)$

Experimental result $\mathcal{B}(B_s^0 \to D_s^{\pm}X) = (93 \pm 25)\%$

Theoretical estimate
$$\mathcal{B}(B^0_s o D^{\pm}_s X) = (92 \pm 11)\%$$

 $\mathcal{B}(B^0_s o D^0/\bar{D}^0 X) = (8 \pm 7)\%$

The new Belle results: $\mathcal{B}(B^0_s \to D^{\pm}_s X) = (60.2 \pm 5.8 \pm 2.3)\%$ (Belle <u>PRD 105, 012004</u>, 2022); $\frac{\mathcal{B}(B^0_s \to D^0/\bar{D}^0 X)}{\mathcal{B}(B^0_s \to D^{\pm}_s X)} = 0.416 \pm 0.018 \pm 0.092$ (Belle <u>JHEP08(2023)131</u>)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

New result of the Belle experiment

Semileptonic tag: $B_s \rightarrow D_s^- X l^+ \nu_l$ $M_{miss}^2 = (\sqrt{s}/2 - \delta E - E_{D_{sl}})^2 - (\vec{p}_{D_{sl}})^2$

Purpose: new measurement of $\mathcal{B}(B^0_s \to D^{\pm}_s X)$ via hadronic tagging. The first direct measurements of $\mathcal{B}(B^0_{\mathfrak{s}} \to D^0/\bar{D}^0X)$ and $\mathcal{B}(B^0_{\mathfrak{s}} \to D^{\pm}X)$.

Measurement of all three branching fractions will allow a consistency check of the results. Murad Yasaveev (HSE) Measurement of $\mathcal{B}(B_s \to D_{(s)}X)$ 4/18

- Reconstruction and selection of B_s^0 candidates is performed in FEI;
- The number of tags is determined by fit to the $M(B_s)$ distribution;
- For each B_s the rest of the event is built and D meson is reconstructed there;

- Reconstruction and selection of B_s^0 candidates is performed in FEI;
- The number of tags is determined by fit to the $M(B_s)$ distribution;
- For each *B_s* the rest of the event is built and *D* meson is reconstructed there;
- The distribution in $M(B_s)$ and M(D) is fitted to obtain the number of $B_s D$ pairs:

$$N_{B_s-D} = N_{B_s} \cdot \mathcal{B}(B_s^0 \to D/\bar{D}X) \cdot \mathcal{B}_D \cdot \varepsilon_D^{\mathrm{ROE}}$$

 $\mathcal{B}(B_s^0 \to D/\bar{D}X) = rac{N_{B_s-D}}{N_{B_s} \cdot \mathcal{B}_D \cdot \varepsilon_D^{\mathrm{ROE}}}.$

Yield of B_s^0 tags

Decay	$\mathcal{P}_{\mathcal{B}_s}$ requirement	Number of tags, N_{B_s}		
$\overline{B_s^0 o D_s^\pm X}$	> 0.0012	12501 ± 310		
$B_s^{0} ightarrow D^{0}/ar{D}^0 X$	> 0.0050	9609 ± 190		
$B^0_s ightarrow D^\pm X$	> 0.0200	6485 ± 122	1	9
Murad Yasaveev (HSE)	Measurement of $\mathcal{B}(B_s \to D_{(s)})$	X) ICPPA-2024		7,

Two-dimensional distribution

Murad Yasaveev (HSE)

Fit to the distribution in $M(B_s)$ and $M(D_s)$ in data

 $D_s^+ \rightarrow \phi \pi^+$:

 $N_{B_s-D_s} = 85 \pm 12.$ $\mathcal{B}(B^0_s o D^{\pm}_s X) = (73.0 \pm 10.6 \pm 5.2)\%.$

Fit to the distribution in $M(B_s)$ and $M(D_s)$ in data

 $D_s^+ \rightarrow \bar{K}^{*0}K^+$:

 $N_{B_s-D_s} = 53 \pm 13.$ $\mathcal{B}(B^0_s o D^{\pm}_s X) = (54.1 \pm 11.7 \pm 3.7)\%.$

ICPPA-2024

< (日) × (1)

Fit to the distribution in $M(B_s)$ and $M(D_s)$ in data

 $D_s^+ \rightarrow K_S^0 K^+$:

 $N_{B_s-D_s} = 55 \pm 10.$ $\mathcal{B}(B^0_s o D^\pm_s X) = (88.2 \pm 16.2 \pm 7.0)\%.$

$\mathcal{B}(B^0_s o D^\pm_s X)$ results

$$\phi\pi^{+}: \ \mathcal{B}(B^{0}_{s} \to D^{\pm}_{s}X) = (73.0 \pm 10.6 \pm 5.2)\%;$$

$$\bar{K}^{*0}K^{+}: \ \mathcal{B}(B^{0}_{s} \to D^{\pm}_{s}X) = (54.1 \pm 11.7 \pm 3.7)\%;$$

$$K^{0}_{s}K^{+}: \ \mathcal{B}(B^{0}_{s} \to D^{\pm}_{s}X) = (88.2 \pm 16.2 \pm 7.0)\%.$$

We average these branching fractions using HFLAV fitting method and obtain:

$$\mathcal{B}(B_s^0 \to D_s^{\pm} X) = (68.6 \pm 7.2 \pm 4.0)\%.$$

The p-value of this fit is 28%. Our result is in agreement with Belle result $(60.2 \pm 5.8 \pm 2.3)\%$. Averaging the new value with the previous one, we find

$$\mathcal{B}(B_s^0 \to D_s^{\pm} X) = (63.4 \pm 4.5 \pm 2.2)\%$$

Production rates at the $\Upsilon(5S)$ resonance

Using the new value of $\mathcal{B}(B_s^0 \to D_s^{\pm}X)$, we recalculate f_s , using the method described in Ref.(JHEP08(2023)131):

$$f_s = (21.8 \pm 0.2 \pm 2.0)\%. \tag{1}$$

To improve its accuracy, we use the relation

$$f_s + f_{BBX} + f_{\mathcal{B}} = 1.$$

Thus, we obtain

$$f_{s} = (21.4^{+1.5}_{-1.7})\%;$$

$$f_{BBX} = (73.8^{+1.5}_{-2.9})\%;$$

$$f_{B} = (4.8^{+3.6}_{-0.5})\%.$$

These results supersede the previous values of production rates $f_s = (22.0^{+2.0}_{-2.1})\%$ (Belle JHEP08(2023)131), $f_{BBX} = (75.1 \pm 4.0)\%$, $f_{B'} = (4.9 \pm 0.6)\%$ (Belle JHEP06(2021)137)

Murad Yasaveev (HSE)

ICPPA-2024 13 / 18

Fit to the distribution in $M(B_s)$ and $M(D^0)$ in data

 $D^0 \rightarrow K^- \pi^+$

 $N_{B_s-D^0} = 56 \pm 16.$ $\mathcal{B}(B^0_s \to D^0/\bar{D}^0X) = (21.5 \pm 6.1 \pm 1.8)\%$

ICPPA-2024

- ∢ ∃ →

Using the new value of $\mathcal{B}(B_s^0 \to D_s^{\pm}X)$ and the ratio $\frac{\mathcal{B}(B_s^0 \to D^0/\bar{D}^0X)}{\mathcal{B}(B_s^0 \to D_s^{\pm}X)} = 0.416 \pm 0.018 \pm 0.092$, we obtain:

$$\mathcal{B}(B^0_s o D^0/ar{D}^0 X) = (26.5 \pm 2.3 \pm 5.9)\%,$$

We average this value with our result ${\cal B}(B^0_s o D^0/ar D^0X)=(21.5\pm 6.1\pm 1.8)\%$ and find

$$\mathcal{B}(B_s^0 \to D^0/\bar{D}^0 X) = (23.9 \pm 4.1 \pm 1.8)\%$$

Murad Yasaveev (HSE)

ICPPA-2024

Fit to the distribution in $M(B_s)$ and $M(D^+)$ in data

 $D^+ \rightarrow K^- \pi^+ \pi^+$:

 $N_{B_s-D^+} = 34 \pm 12.$ $\mathcal{B}(B^0_s o D^{\pm}X) = (12.6 \pm 4.6 \pm 1.3)\%.$

Murad Yasaveev (HSE)

Measurement of $\mathcal{B}(B_s \to D_{(s)}X)$

Using the updated values of $\mathcal{B}(B_s^0 \to D_s^{\pm}X)$ and $\mathcal{B}(B_s^0 \to D^0/\bar{D}^0X)$, and the new value of $\mathcal{B}(B_s^0 \to D^{\pm}X)$:

$$egin{aligned} &\mathcal{B}(B^0_s o D^\pm_s X) = (63.4 \pm 4.5 \pm 2.2)\%, \ &\mathcal{B}(B^0_s o D^0/ar{D}^0 X) = (23.9 \pm 4.1 \pm 1.8)\%, \ &\mathcal{B}(B_s o D^\pm X) = (12.6 \pm 4.6 \pm 1.3)\%. \end{aligned}$$

We find the sum of three branching fractions which is $(99.9 \pm 7.6 \pm 3.8)$ %. The corresponding sum for B^+ and B^0 is (107.9 ± 3.4) %, which is in agreement with the sum for B_s^0 .

Conclusion

The method of hadronic tagging of one B_s in $e^+e \rightarrow B_s^*\bar{B}_s^*$ is developed. It allows to measure inclusive branching fractions:

$$\begin{split} \mathcal{B}(B^0_s \to D^\pm_s X) &= (68.6 \pm 7.2 \pm 4.0)\%, \\ \mathcal{B}(B^0_s \to D^0/\bar{D}^0 X) &= (21.5 \pm 6.1 \pm 1.8)\%, \\ \mathcal{B}(B_s \to D^\pm X) &= (12.6 \pm 4.6 \pm 1.3)\%. \end{split}$$

The new values of $\mathcal{B}(B_s^0 \to D_s^{\pm} X)$ and $\mathcal{B}(B_s^0 \to D^0/\bar{D}^0 X)$ are in agreement with the previous measurements. We also improve accuracy of production rates at the $\Upsilon(5S)$ resonance:

$$f_{s} = (21.3^{+1.6}_{-1.7})\%;$$

$$f_{BBX} = (73.9^{+1.6}_{-3.0})\%;$$

$$f_{\mathcal{B}'} = (4.8^{+3.7}_{-0.5})\%.$$

Back-up

Murad Yasaveev (HSE)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Discussion of the result

The main contribution to $B_s^0 \rightarrow D_s^{\pm} X$ have the following diagrams:

The fragmentation fraction of the $c\bar{s}$ pair into D_s^+ mesons of $(85 \pm 10)\%$, assumed in theoretical estimate, is probably an overestimate. Thus, measurements of the inclusive branching fractions of the B_s^0 meson provide information about dynamics of its decays.

Murad Yasaveev (HSE)

FEI variables

• B_s

- SigProb of each daughter;
- R_2 and $\cos \theta_{thrust}$, where θ_{thrust} is the angle between the thrust of the *B* candidate and the rest of the event (ROE);
- Masses of the $\rho(\rightarrow \pi\pi)$ and $a_1(\rightarrow 3\pi)$ candidates (if they are available).

• D_s^*

- SigProb of each daughter;
- *M*.

• *D*_s

- SigProb of each daughter;
- *M*;
- χ^2 of mass-vertex fit;
- for 3-body decays: masses of all pairs of daughters (ϕ , K^* , ρ).

• **J**/ψ

- SigProb of each daughter;
- *M*.

Murad Yasaveev (HSE)

FEI variables

• K_S

- nisKsFinder output;
- *M*.
- π^0
 - *M*;
 - p;
 - decay angle.

• γ

- number of hits in cluster;
- *E*₉/*E*₂₅ ratio;
- E;
- *p*_t.

•
$$\pi^{\pm}, \, K^{\pm}, \, \mu^{\pm}, \, e^{\pm}$$

- identification variables;
- p;
- *p*_t.

47 ▶

포 문 문

FEI reconstruction channels

$B^0_s ightarrow$	$B^+ ightarrow$	$B^0 ightarrow$		
$D_s^-\pi^+$	$ar{D}^0\pi^+$	$D^{-}\pi^{+}$		
$D_{s}^{-}\pi^{+}\pi^{0}$	$ar{D}^0\pi^+\pi^0$	$D^-\pi^+\pi^0$		
$D_{s}^{-}\pi^{+}\pi^{+}\pi^{-}$	$ar{D}^0\pi^+\pi^+\pi^-$	$D^-\pi^+\pi^+\pi^-$		
$D_s^{*-}\pi^+$	$ar{D}^{*0}\pi^+$	$D^{*-}\pi^+$		
$D_{s}^{*-}\pi^{0}\pi^{+}$	$ar{D}^{*0}\pi^+\pi^0$	$D^{*-}\pi^+\pi^0$		
$D_s^{*-}\pi^+\pi^+\pi^-$	$\bar{D}^{*0}\pi^+\pi^+\pi^-$	$D^{*-}\pi^+\pi^+\pi^-$		
$D_s^- D_s^+$	$D_s^+ \overline{D}{}^0$	$D_s^+ D^-$		
$D_s^{*-}D_s^+$	$D_s^{*+} \bar{D}^0$	$\tilde{D_s^{*+}}D^-$		
$D_{s}^{-}D_{s}^{*+}$	$\bar{D_s^+}\bar{D}^{*0}$	$D_{s}^{+}D^{*-}$		
$D_s^{*-}D_s^{*+}$	$D_s^{*+}ar{D}^{*0}$	$D_{s}^{*+}D^{*-}$		
$J/\psi K^+ K^-$	$J/\psi K^+$	$J/\psi K_{\rm S}^0$		
$J/\psiK^+K^-\pi^0$	$J/\psi K^0_S \pi^+$	$J/\psi K^+ \pi^-$		
	$J/\psi K^+ \pi^+ \pi^-$			
$ar{D}^0 K^- \pi^+$	$D^-\pi^+\pi^+$	$D^{*-}K^+K^-\pi^+$		
$ar{D}^{*0}K^-\pi^+$	$D^{*-}\pi^+\pi^+$			
$D_s^-K^+$		<	国 ▶ (◆ 国 ▶	æ

Murad Yasaveev (HSE)

Measurement of $\mathcal{B}(B_s \to D_{(s)}X)$

ICPPA-2024

Murad Yasaveev (HSE)

ICPPA-2024 25 / 18

▲■▶ ▲ ヨ▶ ▲ ヨ▶ - ヨ - のへで

Simultaneous fit

Event selection

Systematic uncertainty

Source	$\phi \pi^+$	Channel $ar{K}^{*0}K^+$	$K_S^0 K^+$	Combined
Signal shape	2.3	1.8	1.6	2.0
Broken signal	0.9	0.9	0.9	0.9
Smooth background	1.6	1.0	1.1	1.4
Tracking	1.1	1.1	1.1	1.1
K/π identification	2.1	1.9	0.7	1.7
$K_{\rm S}^0$ reconstruction	_	_	2.3	0.6
D_s momentum	0.8	0.6	0.2	0.6
Dalitz plot	0.8	0.8	_	0.6
FEI efficiency	3.6	3.6	3.6	3.6
MC statistics	4.4	4.5	5.7	2.7
$\overline{\mathcal{B}(D_s o KK\pi)}$	1.9	1.9	_	1.4
$\mathcal{B}(D_s \to K_S K)$	-	_	2.4	0.6
$\mathcal{B}(K_S^0 \to \pi^+\pi^-)$	_	_	< 0.1	-
Total	7.2	6.9	7.9	5.9

Murad Yasaveev (HSE)

Measurement of $\mathcal{B}(B_s \to D_{(s)}X)$

Systematic uncertainty

Source	$B^0_s ightarrow D^0/ar{D}^0 X$	$B^0_s ightarrow D^{\pm} X$
Signal shape	2.0	0.6
Broken signal	1.1	2.9
Smooth background	0.3	0.9
Tracking	0.7	1.1
K/π identification	1.2	3.0
D momentum	0.2	< 0.1
FEI efficiency	2.1	2.1
MC statistics	7.5	9.0
$\mathcal{B}(D o K\pi(\pi))$	0.8	1.7
Total	8.3	10.4

Source	Semileptonic tag	This work	Combined
Uncorrelated	3.0	5.3	2.6
Tracking	1.1	1.1	1.1
K/π identification	1.3	1.7	1.5
$\mathcal{B}(D_s o KK\pi)$	1.5	1.4	1.4
$\mathcal{B}(D_s \to K_S K)$	0.4	0.6	0.5
Total			3.5

Results at the $\Upsilon(4S)$ resonance

_	${\cal B}(B^0 o D^0 X)$, %	${\cal B}(B^0 o D^+ X)$, %	$\mathcal{B}(B^0 o D_s X)$, %
Result	$53.2\pm1.0\pm1.0$	$38.9 \pm 0.7 \pm 0.7$	$11.6\pm0.4\pm0.5$
PDG	55.5 ± 3.2	39.2 ± 3.5	$11.8^{+2.2}_{-2.0}$

	${\cal B}(B^+ o D^0 X)$, %	${\cal B}(B^+ o D^+ X)$, %	${\cal B}(B^+ o D_s X)$, %
Result	$79.3 \pm 1.0 \pm 0.8$	$11.1 \pm 0.5 \pm 0.4$	$13.0\pm0.4\pm0.4$
PDG	87.6 ± 4.1	12.4 ± 1.3	9.0 ± 1.4

Murad Yasaveev (HSE)

ICPPA-2024

Using the ratio of production rates f^{+-}/f^{00} at the $\Upsilon(4S)$, we find

$$\mathcal{B}(B o D^0 / \bar{D}^0 X) = (66.7 \pm 0.7 \pm 0.6)\%,$$

$$\mathcal{B}(B \to D_s^+/D_s^-X) = (12.3 \pm 0.3 \pm 0.3)\%.$$

These branching fractions are in agreement with the last Belle results:

$${\cal B}(B o D^0/ar D^0 X) = (66.65\pm 0.04\pm 1.77)\%,$$

$$\mathcal{B}(B \to D_s^+/D_s^-X) = (11.28 \pm 0.03 \pm 0.55)\%.$$

We take the accuracy with which this test is carried out as a systematic error of our method.

ICPPA-2024

イロト イポト イヨト イヨト 二日