Analysis of experimental data on neutron decay for the possibility of the existence of the right vector boson

A.P. Serebrov

NRC "Kurchatov Institute" Petersburg Institute of Nuclear Physics, Gatchina, Russia

7th International Conference on Particle Physics and Astrophysics 22-25 October 2024

1

1. Precision studies of neutron decay and the search for deviations from the Standard Model

2. Inconsistencies between experimental results and the − theory of weak interaction

3. The decay of a neutron within the left-right manifest model of mixing left and right vector bosons can be successfully described by W_R **with mass** $(M_{W_R} = 304^{+28}_{-22}$ GeV, $\zeta = -0.038$)

4. Why wasn't $W_R(300 \text{ GeV})$, $\zeta = -0.038$) detected at FermiLab and CERN?

5. Prospects for neutron decay experiments

Precision studies of neutron decay and the search for deviations from the Standard Model Neutron Spin J $\frac{d^3\Gamma}{dE_e d\Omega_e d\Omega_v} = \frac{1}{2(2\pi)^5} G_F^2 |V_{ud}|^2 (1+3|\lambda|^2) p_e E_e (E_0 - E_e)^2$ Jackson, Treiman, Wyld,
 $\frac{dE_e d\Omega_e d\Omega_v}{dE_e d\Omega_v d\Omega_v} = \frac{1}{2(2\pi)^5} G_F^2 |V_{ud}|^2 (1+3|\lambda|^2) p_e E_e (E_0 - E_e)^2$ Jackson, Treiman, Wyld, **Electron** в Neutrino p_v $\times \begin{bmatrix} 1 \\ -2 \frac{\lambda^2 + \lambda}{1 + 3\lambda^2} \\ 2 \frac{\lambda^2 - \lambda}{1 + 3\lambda^2} \\ = g_{\text{A}}/g_{\text{V}} \\ \frac{(1 - \lambda^2)}{(1 + 3\lambda^2)} \end{bmatrix}$ $\begin{array}{c|c}\n-2 & \frac{\lambda^2 + \lambda}{1 + 3\lambda^2} & \frac{\lambda^2 - \lambda}{1 + 3\lambda^2} \\
2 & \frac{\lambda^2 - \lambda}{1 + 3\lambda^2} & \frac{\lambda^2}{1 + 3\lambda^2} \\
= g_{\text{A}}/g_{\text{V}} & & \\
\frac{(1 - \lambda^2)}{(1 + 3\lambda^2)} & & \\
2 & \frac{\text{Im}(\lambda)}{1 + 3\lambda^2} & & \\
\end{array}$ Proton p_p **Neutron lifetime -0.11958(21) 0.17% -0.11958(21) 0.17%** $\int \tau^{-1} = G_F^2 |V_{ud}|^2 (1+3\lambda^2) \frac{f^k m_e^3 c^4}{2\sigma^3 h^2}$ 877.75 ± 0.35 s 0.04% **0.9807(30) 0.3% Unitarity CKM** $\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$ **-1.2757(5) 0.04%** W_L $2₁$ $-\lambda^2$) λ^2) $a = \frac{(1 + 2i)^{2}}{(1 + 2i)^{2}}$ $=\frac{(1 - \lambda)^{2}}{(1 - 2 \lambda)^{2}}$ **-0.1049(13) 1.3%** λ^2 | - $V_{ud}^{unit} = \sqrt{1 - V_{us}^2 - V_{ub}^2}$ W_R $D = 2 \cdot \frac{\text{Im}(\lambda)}{1 + 3 |\lambda|^2}$ -1.2 (2.0) \times 10⁻⁴ $= 0.97452(18)$.

3

Improving the accuracy of measurements and trends in the neutron lifetime

Experimental results on neutron lifetime since 1990 from [8], discrepancy between 2005 data [9] and 2000 data [10], new magnetic trap results (marked in green) which are decisive [11-14].

Measuring neutron decay asymmetries

Measurements of the neutrino asymmetry of neutron decay (B) and the averaged PDG result [18].

Measurements of the electron-neutrino asymmetry of neutron decay (a) and the averaged PDG result [18].

year

5

Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: 2020 critical survey, with implications for V_{ud} and CKM unitarity

J. C. Hardy^{o*} and I. S. Towner

Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

Z of daughter

A new critical review of all half-life, decay energy, and branching ratio measurements associated with 23 superallowed $0+ \rightarrow 0+$ is available. Their average Ft combined with the muon lifetime yields the up-down quark mixing element of the Cabibbo-Kobayashi-Maskawa matrix, **Vud** = 0.97373 ± 0.00031 . This is one standard deviation lower than our 2015 result, and its uncertainty has increased by 50%. This is not a consequence of any shifts in the experimental data, but of new calculations for the radiative corrections. **The lower Vud now leads to a higher tension in the top-row unitarity test in the CKM Matrix.**

This result is given in the last row of Table XVII: where the unitarity sum is $|Vu|2 = 0.9985(6)$, indicating **unitarity violation of 2.4σ.**

Inconsistencies between experimental results and the *V***−***A* **theory of weak interaction**

7

The difference Vud between the matching values and the Vud value from 0+-0+ s **transitions is 2.6 sigma** .

Dependence of the quark mixing matrix element Vud on λ , calculated using the SM formulas from neutron decay, from experiments with Fermi supereallowed nuclear $0+ - 0+$ transitions and from the unitarity of the SM matrix, using Vus measurements [18].

$$
\frac{\Delta V_{ud}}{V_{ud}} = 8.6 * 10^{-4} (2.6 \,\sigma)
$$

There is a discrepancy between the experimental value of neutrino asymmetry and the SM prediction. The difference between these values is 2.1 sigma

Comparison of the **experimental neutrino asymmetry** of neutron decay and that calculated within the SM framework depending on the ratio of the axial and vector constants of weak interaction λ .

$$
\frac{\Delta B}{B} = 6.5 * 10^{-3} (2.1 \sigma)
$$
\n
$$
\frac{\Delta B}{B} = \frac{B_{\text{exp}} - B_{\text{SM}}}{B_{\text{SM}}} \qquad B_{\text{SM}} = \frac{2\lambda_n (\lambda_n - 1)}{(1 + 3\lambda_n^2)}
$$

Data
$$
|Vus|
$$
 from PDG
 $V_{us} = 0.2243(8)$

The third element of the top row, **|Vub|, is very small** and has almost no effect on the unitarity test. Its value from the Particle Data Group (PDG) evaluation is:

$$
|Vub| = (3.94 \pm 0.36) \times 10-3
$$

V^{*unit*} from the unitarity **of the CKM matrix**

$$
V_{ud}^{unit} = \sqrt{1 - V_{us}^2 - V_{ub}^2} = 0.97452(18).
$$

however, the matrix element V_{ud}^{00} from $0^+ - 0^+$ beta decays is different

$$
V_{ud}^{00} = 0.97367(32)
$$

$$
\frac{V_{ud}^{unit} - V_{ud}^{00}}{V_{ud}^{00}} = 8.6 * 10^{-4} (2.4 \sigma)
$$

The description of experimental results within the framework of the V-A version of the theory turns out to be unsatisfactory, since it cannot be represented by a single value of the parameter $\lambda = G_{\lambda}/G_{\nu}$ $\begin{array}{c}\n\mathbf{a} \text{ is in } \mathbf{f} \text$

 $a_{\rm exp} = -0.10402(82)$ $A_{\rm exp} = -0.11958(21)$ $B_{\rm exp} = 0.9807(30)$ $V_{ud}^{unit} = 0,97452(18)$

Results of calculating the parameter value $\lambda = G_{\lambda}/G_{\nu}$ within the V-A version of the weak interaction theory, the experiments for a, A, B and τ cannot be represented by a single value.

The observed discrepancy can be analyzed within the framework of a model taking into account right-handed currents. In the simplest leftright manifesto of the model, mixing of left and right vector bosons is considered, and for current states W_L W_R **and mass states** W_1 W_2 **we can write: pancy can be analy:**
 count right-handed
 condel, mixing of light-handed
 rrent states W_L W_L
 $\frac{W_L}{W_L}$
 $\frac{1}{1} \cos \zeta + W_2 \sin \zeta$
 $\frac{1}{1} \cos \zeta - W_1 \sin \zeta + W_2 \sin \zeta$
 condensizing ζ
 condensizing of cu
 an be analyzed with
ght-handed curren
mixing of left and
ates W_L W_R and
 W_L W_R and
 W_L and $\frac{V_1}{V_1}$ sin $\frac{V_2}{V_1}$
of the squares of the m
 W_1 and W_2 . ancy can be analyzed with
unt right-handed currents
model, mixing of left and
rent states W_L W_R and n
 $\overline{\cos \zeta + W_2 \sin \zeta}$
 $\overline{\cos \zeta - W_1 \sin \zeta + W_2 \cos \zeta}$
angle of mixing of current state
- ratio of the squares of the m ncy can be analyzed within the fr
nt right-handed currents. In the
nodel, mixing of left and right ve
nt states W_L W_R and mass stat
 $\overline{\cos \zeta + W_2 \sin \zeta}$
 $(-W_1 \sin \zeta + W_2 \cos \zeta)$
ngle of mixing of current states
ratio of **Example 1** discrepancy can be analyzed within
 $\frac{1}{2}$ into account right-handed currents.

sto of the model, mixing of left and rind for current states W_L W_R and ma
 $W_L = W_1 \cos \zeta + W_2 \sin \zeta$
 $W_R = e^{-i\omega} (-W_1 \sin \zeta + W_2$ **Example 1** discrepancy can be analyzed within the fraction of the model, mixing of left and right vector of the model, mixing of left and right vector and for current states W_L W_R and mass state e:
 $W_L = W_1 \cos \zeta + W_2 \$ can be analyzed within the framework of a
right-handed currents. In the simplest left-
el, mixing of left and right vector bosons is
states W_L W_R and mass states W_1 W_2
 $\zeta + W_2 \sin \zeta$
 $W_1 \sin \zeta + W_2 \cos \zeta$
e of mix screpancy can be analyzed within the framework of a

in account right-handed currents. In the simplest left-

if the model, mixing of left and right vector bosons is

in current states W_L W_R and mass states W_1 W_2 screpancy can be analyzed within the framework of a

in account right-handed currents. In the simplest left-

if the model, mixing of left and right vector bosons is

in current states W_L W_R and mass states W_1 W_2

$$
W_L = W_1 \cos \zeta + W_2 \sin \zeta
$$

$$
W_R = e^{-i\omega} (-W_1 \sin \zeta + W_2 \cos \zeta)
$$

where ζ is the angle of mixing of current states W_l and W_R , δ – ratio of the squares of the masses of states W_1 and W_2 .

 ω - CP-violating phase

V-A variant of the theory left-right manifest model

$$
\tau_{\text{exp}} \pm \Delta \tau_{\text{exp}} = \frac{4905,7}{V_{ud}^2 [1 + x^2 + 3\lambda^2 (1 + y^2)]}
$$
\n
$$
a_{\text{exp}} \pm \Delta a_{\text{exp}} = \frac{(1 - \lambda^2)[1 + (\delta + \zeta)^2] - 4\delta\zeta}{(1 + 3\lambda^2)[1 + (\delta + \zeta)^2] - 4\delta\zeta}
$$
\n
$$
A_{\text{exp}} \pm \Delta A_{\text{exp}} = -\frac{2\lambda[\lambda(1 - y^2) + (1 - xy)]}{1 + x^2 + 3\lambda^2 (1 + y^2)}
$$
\n
$$
B_{\text{exp}} \pm \Delta B_{\text{exp}} = \frac{2\lambda[\lambda(1 - y^2) - (1 - xy)]}{1 + x^2 + 3\lambda^2 (1 + y^2)}
$$
\nWhere $x = \delta - \zeta$, $y = \delta + \zeta$.

Expansion in δ **and** ζ **of order no higher than two can be represented by the following expressions**

$$
\tau_{\exp} \pm \Delta \tau_{\exp} = \frac{4905,7}{V_{ud}^2 [1 + x^2 + 3\lambda^2 (1 + y^2)]}
$$
\n
$$
a_{\exp} \pm \Delta a_{\exp} = \frac{(1 - \lambda^2)[1 + (\delta + \zeta)^2] - 4\delta\zeta}{(1 + 3\lambda^2)[1 + (\delta + \zeta)^2] - 4\delta\zeta}
$$
\n
$$
A_{\exp} \pm \Delta A_{\exp} = -\frac{2\lambda [\lambda (1 - y^2) + (1 - xy)]}{1 + x^2 + 3\lambda^2 (1 + y^2)}
$$
\n
$$
B_{\exp} \pm \Delta B_{\exp} = \frac{2\lambda [\lambda (1 - y^2) - (1 - xy)]}{1 + x^2 + 3\lambda^2 (1 + y^2)}
$$

no higher than two can be represented by the
\nowing expressions\n
$$
\frac{\tau_{\rm exp} \pm \Delta \tau_{\rm exp} - \tau_{V-A}}{\tau_{V-A}} \simeq -\left[\delta^2 + \zeta^2 + 2\frac{(3\lambda^2 - 1)}{(3\lambda^2 + 1)}\delta\zeta\right]
$$
\n
$$
\frac{a_{\rm exp} \pm \Delta a_{\rm exp} - a_{V-A}}{a_{V-A}} \simeq -\frac{16}{(1-\lambda^2)(1+3\lambda^2)}\delta\zeta
$$
\n
$$
\frac{A_{\rm exp} \pm \Delta A_{\rm exp} - A_{V-A}}{A_{V-A}} \simeq -2\delta^2 - 2\delta\zeta \frac{\left[6\lambda^3 + 3\lambda^2 - 1\right]}{(\lambda+1)(1+3\lambda^2)} - 2\frac{\lambda}{\lambda+1}\zeta^2}
$$
\n
$$
\frac{B_{\rm exp} \pm \Delta B_{\rm exp} - B_{V-A}}{B_{V-A}} \simeq -2\delta^2 - 2\delta\zeta \frac{\left[6\lambda^3 - 3\lambda^2 + 1\right]}{(\lambda-1)(1+3\lambda^2)} - 2\frac{\lambda}{\lambda-1}\zeta^2}
$$
\n14

$$
\frac{a_{\exp} \pm \Delta a_{\exp}}{a_{V-A}} \simeq -\frac{10}{\left(1 - \lambda^2\right)\left(1 + 3\lambda^2\right)} \delta \zeta
$$

$$
\frac{[\lambda(1-y^2)-(1-xy)]}{(1+x^2+3\lambda^2(1+y^2))}\n\begin{array}{|l|}\nA_{\exp}\pm\Delta A_{\exp}-A_{V-A} & \Delta\\
\hline\nA_{V-A} & \Delta\end{array}\n\simeq -2\delta^2 - 2\delta\zeta \frac{\left[6\lambda^3+3\lambda^2-1\right]}{(\lambda+1)\left(1+3\lambda^2\right)} - 2\frac{\lambda}{\lambda+1}\zeta^2
$$

$$
\boxed{\frac{B_{\text{exp}} \pm \Delta B_{\text{exp}} - B_{\text{V-A}}}{B_{\text{V-A}}} \simeq -2\delta^2 - 2\delta \zeta \frac{\left[6\lambda^3 - 3\lambda^2 + 1\right]}{(\lambda - 1)\left(1 + 3\lambda^2\right)} - 2\frac{\lambda}{\lambda - 1}\zeta^2}
$$

The search for optimal values was done using the method χ^2

vector bosons can be successfully described

Optimal values of the parameters δ and ζ obtained by the χ2 method using experimental neutron decay data for a, A, B and τ

Analysis of Fermi superallowed ^+−^+ transitions taking into account the influence of right-handed currents

$$
(V_{ud}^{00})^2 = (V_{ud,SM}^{00})^2 [1 + (\delta + \zeta)^2]
$$

from neutron decay $V_{ud}^n = 0.97477(37)$, from the unitarity $V_{ud}^{unit} = 0.97452(18)$, from $0^+ - 0^+$ transitions, $V_{ud}^{00} = 0.97426(31)$

Dependence of the quark mixing matrix element $V_{\mu}ud$ on calculated using the SM formulas from neutron decay (blue area). Determination of λ from the electron asymmetry of neutron $decay - A (green area)$. Determination of V_{ud} from the unitarity of the CM matrix, using V_{\perp} us measurements [18] (orange area). Determination of *V_ud* from experiments with Fermi **superresolved nuclear 0+-0+ transitions after introducing a correction for the optimal parameters** δ **and** ζ **obtained in the analysis of neutron decay (shaded area).** λ

It is important to note that the coincidence was obtained when studying different objects - from neutron decay and from nuclear transitions.

It should be additionally noted that the contradiction noted in [22] as a violation of unitarity is eliminated. We explain this discrepancy within the framework of the left-right manifest model.

Dependence of the parameter δ on the parameter ζ from equations (5) for the results of measuring the quantities a, A , B and τ at the value λ opt=−1.2738 with an additional analysis for 0^{\wedge} + -0^{\wedge} + transitions from equation (11). Purple lines correspond to this additional analysis.

Taking into account the accuracy of calculation of radiative corrections

$$
\frac{1}{\tau_n} = \frac{G_F^2 |V_{ud}|^2}{2\pi^3} m_e^5 (1 + 3\lambda_n^2)(1 + RC)f
$$

$$
f = 1.6887(1)
$$

Radiative corrections in the form of a multiplier

 $(1 + RC)$ can be represented as a work $(1 + RC) = (1 + \delta_R)(1 + \Delta_R)$, where is the contribution

 $\delta_R = 0.01505$ arises from the exchange or emission of one photon exclusively, the contribution

 $\Delta_R = 0.02381$ – that part of the radiative corrections that is due to the exchange of electroweak boson and QCD corrections [24].

Table of radiative corrections to the neutron lifetime **and correlation coefficients of neutron decay asymmetries in percent.**

Taking into account the accuracy of the unitarity condition

The above analysis does not yet take into account the accuracy of determining V_{ud}^{unit} from experiments

with strange and charmed mesons

$$
V_{ud}^{unit} = \sqrt{1 - V_{us}^2 - V_{ub}^2} = 0.97452(18).
$$

21

Therefore, a final analysis was carried out, taking into account the accuracy of the calculation of radiative corrections for the neutron lifetime and the accuracy of determining V_{ud}^{unit} .

Final result of the analysis

As a result of the analysis, it was found that there are indications of the existence of a right vector boson with mass and mixing angle

$$
M_{W_R} = 304^{+28}_{-22} \text{ GeV}
$$

$$
\zeta = -0.038 \pm 0.014.
$$

Comparison with the constraints on the mass of W_R **and the mixing angle that were obtained earlier - in 1998 in [19] and in 2012 in [36].**

Our work 1998 in [19]

More precise constraints on the W_R mass and **mixing angle were obtained in muon decay:**

mixing angle, which were obtained earlier in [19] (shaded area C.L. 90%).

Permitted areas 1σ , 2σ for the masses W_R and mixing angle ζ in the LRS model from [36].

PHYSICAL REVIEW D 84, 032005 (2011) Precise measurement of parity violation in polarized muon decay

J.F. Bueno, ^{1,*} R. Bayes,^{2,†} Yu. I. Davydov,^{2,‡} P. Depommier,³ W. Faszer,² C. A. Gagliardi,⁴ A. Gaponenko,^{5,§} D. R. Gill,² A. Grossheim, ² P. Gumplinger, ² M. D. Hasinoff, ¹ R. S. Henderson, ² A. Hillairet, ^{2,||} J. Hu, ^{2,|}| D. D. Koetke, ⁶ R.P. MacDonald, ⁵ G.M. Marshall, ² E.L. Mathie, ⁷ R.E. Mischke, ² K. Olchanski, ² A. Olin, ^{2,**} R. Openshaw, ² J.-M. Poutissou,² R. Poutissou,² V. Selivanov,⁸ G. Sheffer,² B. Shin,^{2,††} T. D. S. Stanislaus,⁶ R. Tacik,⁷ and R. E. Tribble⁴

(TWIST Collaboration)

¹University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada ²TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada ³University of Montreal, Montreal, Quebec, H3C 3J7, Canada ⁴Texas A&M University, College Station, Texas 77843, USA ⁵University of Alberta, Edmonton, Alberta, T6G 2J1, Canada ⁶Valparaiso University, Valparaiso, Indiana 46383, USA ⁷University of Regina, Regina, Saskatchewan, S4S 0A2, Canada ⁸Kurchatov Institute, Moscow, 123182 Russia

We present a new high precision measurement of parity violation in the weak interaction, using polarized muon decay. The TWIST Collaboration has measured $P_{\mu}^{\pi} \xi$, where P_{μ}^{π} is the polarization of the muon in pion decay and ξ describes the intrinsic asymmetry in muon decay. We find $P_{\mu}^{\pi}\xi$ = 1.00084 ± 0.00029 (stat.)^{+0.00165} (syst.), in good agreement with the standard model prediction of $P_{\mu}^{\pi} = \xi = 1$. Our result is a factor of 7 more precise than the pre-TWIST value, setting new limits in left-right symmetric electroweak extensions to the standard model.

Why W_R **(300 GeV**, $\zeta = -0.038$) **wasn't detected at FermiLab and CERN?**

Why W_R **(300GeV,** $\zeta = -0.038$ **) wasn't detected at FermiLab?**

Search for W' bosons decaying to an electron and a neutrino with the D0 detector

 \mathbf{S}

Estimation of the contribution of W $R(300 \text{ GeV}, \zeta = -0.038)$ to the ATLAS collaboration data

This analysis was done in HEPD of PNPI

The effect of the right boson 304^{+28}_{-22} GeV with a mixing angle of - 0.038 **is at the level of systematic calculation errors.**

With WR

wo WR

Conclusion from the analysis of experiments at colliders

The results of our work

$$
M_{W_R} = 304^{+28}_{-22} \text{ GeV}
$$

$$
\zeta = -0.038 \pm 0.014.
$$

do not contradict the results of experiments at colliders

Prospects for neutron decay experiments

Project of the installation for measuring neutrino asymmetry at the PIK reactor

There is a possibility of further increasing the accuracy of measurements in neutron decay. For example, the PNPI NRC KI project "Neutron Beta Decay" for the PIK reactor is aimed at this [29-31], in which it is planned to use a superconducting solenoid with a long flight base for neutron decay in order to increase the statistics of decay events and with a magnetic mirror-collimator to isolate the direction of electron emission. It is a development of the PNPI RAS experiment of 1998 [19], in which it is planned to achieve a relative measurement accuracy of 10-3 for neutrino and electron decay asymmetries.

Testing of the installation at NIIEFA 31.05.24. A current of 1050 A was introduced into the superconducting solenoid.

Project of the installation for measuring neutrino asymmetry at the PIK reactor

Relative measurement accuracy of 10-3 for neutrino and electron decay asymmetries

Increasing the measurement accuracy by 3 times can already provide an answer to the question posed.

Separate detection of protons and electrons

1. As a result of the analysis, it was established that there are indications of the existence of a right vector boson with mass $= 304^{+28}_{-22}$ GeV **and the mixing angle with** W_L : $\zeta = -0.038 \pm 0.014$.

2. This result does not contradict experiments at colliders.

3. However, it is necessary to conduct even more precise measurements of neutron decay and its theoretical analysis.

4. Measuring neutrino asymmetry with an accuracy of 10-3 is our goal.

SCIENTIFIC RESEARCH PROGRAM Neutron decay at the reactor PIK

