Multilayer SND (Scattering & Neutrino Detector) optimization for statistical analysis of tau-neutrino events using detector response

Vasilisa Guliaeva, Anna Anokhina

7th ICPPA-2024 22-25 October 2024

23/10/2024

Search for Hidden Particles (SHiP)

- ► SHiP is a recently approved intensity-frontier experiment aiming to search for hidden particles with mass up to O(10) GeV and extremely weak couplings, down to 10⁻¹⁰.
- ► FIP decay search in background-free environment and LDM scattering
- Rich program at the Scattering & Neutrino Detector (SND): search for Light Dark Matter (LDM) & neutrino interaction physics with unique access to τ neutrino
 - Original Proposal (2013): Developed for new cavern ECN4
 - Refined Proposal (2023): Adaptation to existing ECN3 facility

SHiP experimental techniques: Decay & Scattering

Sensitivity is determined by three key factors:

Yields (protons on target)

Vasilisa Guliaeva, Anna Anokhina

- Acceptance (including lifetime and angular acceptance)
- Background level

An exhaustive search require "model-independent" detector configuration, which should enable:

- Comprehensive reconstruction and identification of both fully and partially reconstructible modes
- Sensitivity to partially reconstructed modes
 - Distinguish between different models.
 - Assess the compatibility of the observed signal with theoretical predictions.

	Physics model	Final state
HSDS	SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ \ell^{\pm}K^{\mp}, \ \ell^{\pm}\rho^{\mp}, \ \ell^{+}\ell^{-}\nu$
	Dark photons	$\ell^{+}\ell^{-}, 2\pi, 3\pi, 4\pi, KK, q\bar{q}, D\bar{D}$
	Dark scalars	$\ell \ell, \pi \pi, KK, q\bar{q}, D\bar{D}, GG$
	ALP (fermion coupling)	$\ell^{+}\ell^{-}, 3\pi, \eta\pi\pi, q\bar{q}$
	ALP (gluon coupling)	$\pi \pi \gamma$, 3π , $\eta \pi \pi$, $\gamma \gamma$
	HNL	$\ell^{+}\ell^{'-}\nu, \pi l, \rho l, \pi^{0}\nu, q\bar{q}^{'}l$
	Axino	$\ell^+\ell^-\nu$
	ALP (photon coupling)	77
	SUSY sgoldstino	$\gamma\gamma, \ell^+\ell^-, 2\pi, 2K$
SND	LDM	electron, proton, hadronic shower
	$\nu_{\tau}, \overline{\nu}_{\tau}$ measurements	τ^{\pm}
	Neutrino-induced charm production $(\nu_e, \nu_\mu, \nu_\tau)$	$D_s^{\pm}, D^{\pm}, D^0, \overline{D^0}, \Lambda_c^+, \overline{\Lambda_c}^-$

- 4×10^{19} protons on target per year currently available in the SPS
 - $\blacktriangleright~\sim 2\times 10^{17}$ charmed hadrons (> 10 times the yield at HL-LHC)
 - \blacktriangleright ~ 2 × 10¹² beauty hadrons
 - $\blacktriangleright~\sim 2 \times 10^{15}$ tau leptons
 - \$\mathcal{O}(10^{20})\$ photons above 100 MeV
 - $\begin{array}{l} \blacktriangleright \quad 3500 \ \nu_{\tau} + \bar{\nu}_{\tau} \ {\rm per year}, \\ {\rm and} \\ 2 \times 10^5 \ \nu_e + \bar{\nu}_e / 7 \times 10^5 \ \nu_{\mu} + \bar{\nu}_{\mu} \\ {\rm regardless \ of \ target \ design} \end{array}$

Visible decay to SM particles

Scattering off atomic electrons and nuclei

Scattering & Neutrino Detector (SND)

- Original design based on nuclear emulsions: DONuT / OPERA / SND@LHC
- Emulsion Cloud Chamber (ECC) bricks
- Target Tracker (TT): 18 layers of SciFi
- μ spectrometer: Drift tubes (4 stations)
 - Air core dipole magnet: 1 T

The task

- We need to classify the two signals from these processes:
 - NCDIS $\nu_{\mu} \rightarrow$ hadrons
 - CCDIS $\nu_{\mu} \rightarrow \mu + hadrons$
 - CCDIS ν_τ → τ + hadrons (hadronic & leptonic τ decay modes)

Neutrino spectra were taken from the SHiP experiment and used as a GENIE input. Detector response was performed using Geant4.

Detector concept

► Absorber:

- Material: Fe (5 cm, 2 cm)
- Magnetic field: 1.7 Tesla along the y-axis

Tracker:

▶ Fibres: Ø 250 µm SciFi

Scintillator:

- Endep Scint layers
- 1 (3) cm \times 1 (3) cm \times 1.5 cm (xyz) (Poly)

#	Name	Quantity
1	Magnetic absorber (GO Steel)	50
2	Sci	50
3	SciFi	50
4	Current Cail	2

Longitudinal shower profile for CCDIS u_{τ} & NCDIS u_{μ}

- Charged current (hadronic decay):
 - Hadrons from τ decay are more energetic.
- Neutral current and charged current (leptonic decay):
 - Hadrons initiated by Z slightly energetic than hadrons from W.

Energy deposit, 50 layers: Absorber(Fe, 5. cm) x SciFi (Poly, 0.5 cm) x Sci (Poly, 1.5 cm)

Energy resolution

- Incoming particles: π , e
- ▶ Particles momentum range: 1-100 GeV/c

Energy deposit, Absorber(Fe, 5.0 cm) x SciFi (Poly, 0.5 cm) x Sci (Poly, 1.5 cm)

Energy deposit collected in Scint layers

Particle (muon) momentum reconstruction

- We determine sagitta to use the dependences of these parameters on the kinetic energy of the muon
- The trajectory parameters, S1, S2, S3 are calculated as "distances from a point to a line"
- ▶ If the functions p = f(s) for a limited range of **10-30** GeV are used, the most accurate determination of the muon momentum of $\sim 12\%$ is obtained
- ▶ If the functions p = f(s) for **10-50 GeV** are used, a determination of the muon momentum with an accuracy of \sim **14-15%** is obtained

12000

10000 F

8000

6000È

4000

2000

0.7905

0.1372

0.6265

- 10GeV

-3034/

-403m

-503#

Outlook 00000000

Particle (muon) charge reconstruction

Determine charge: the sign of the fitted parabolic coefficient p2 to decide whether the muon is

•
$$\mu^+: p_2 < 0$$

• $\mu^-: p_2 > 0$

-0.001-0.0008-0.0006-0.0004-0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001

23/10/2024

Particle (pion) momentum reconstruction

350

- ▶ Based on the fastest hadron track charge, determine whether the tau neutrino is ν_{τ} or $\bar{\nu}_{\tau}$
- Momentum reconstruction for hadrons using SciFi information in process
- Trajectory for hadrons using only Scint layers information

동 ⁴⁰

N 35

30 25

20

15-

10

-10-

Statistical analysis 0000000

Neutrino vertex reconstruction

- To reconstract the vertex, we extrapolate our tracks by a linear function
- Each track segment is crossed in pairs, then the average sum of the distance to the center of the segment that connects the crossed lines is taken
- In the actual configuration of the detector there is no zero point, there are only track points starting from z=5cm

Accuracy of neutrino vertex reconstruction (DISNC)

Conclusion: vertex reconstruction accuracy using SciFi layers $\sim 0.1~cm$

Vasilisa Guliaeva, Anna Anokhina

CCDIS u_{τ} (hadronic decay) & NCDIS u_{μ}

- 16 Scint layers (out of 50 layers)
 - Energy deposition
 - Energy of hadron cluster
 - Shower CoG in XY plane
 - Shower width in XY plane
- in total: 81 parameter

Parameters describing close parts (layers) of the detector are correlated

The less diagonal the matrix, the better the classification

Statistical analysis ○●○○○○○

CCDIS u_{τ} (leptonic decay) & CCDIS u_{μ} Reasonable cuts on the data

- Non-trivial problem due to:
 - High-imbalanceness of the classes (300:1);
 - overlaping feature distributions.
- The cut on the angle btw P_{μ} and P_{hadr} should be applied:

 $\alpha < \arctan{\frac{\rm Det.~transverse~length~/~2}{\rm Det.~longitudinal~length~/~2}} \simeq 10~{\rm degr.}$ — rejects 70% of the data

- removing low-energy nucleons from the nucleus fragmentation: fully absorbed in the passive material
- ▶ In case of using Impact parameter (IP) of muons w.r.t. to the interaction point:

IP > 0.1 cm (resolution is 0.1 cm) & IP < 0.6 cm (remove outliers)

Impact parameter (IP) of muons w.r.t. to the interaction point

- Multiple scattering of muon/tau also contributes into IP.
- Resolution of the vertex reconstruction is not sufficient to use IP as a parameter in the classification.

Simulation (5 cm of the passive material). Extrapolation of first 3 points back to the z = 0 cm.

 $\mathrm{IP}_{\mathrm{max}}^{\mathrm{nutau}} - \mathrm{IP}_{\mathrm{max}}^{\mathrm{numu}} \simeq 0.007 \ \mathrm{cm}$

Crucial parameter

 Difference in missing transverse momentum distribution is mostly caused by the neutrinos that carried away momentum.

https://arxiv.org/pdf/1512.05748

Cut on the missing P_T is possible but rejects most of the nutau events as well \rightarrow BDT.

Classification setup of BDT classifier (Lightgbm based)

- Training on 80%, validation on 20% of the data.
- ► Data is weighted to consider the imbalanceness of the dataset (w = 1./300 weights for nutau events instead of w = 300. for numu).
- 18 kinematic parameters used as features (momenta and energies of muons and hadronic showers, and angles btw momenta in the transverse plane).
- Muon momenta and hadronic shower energies are smeared according to the detector resolution.
- Optimization of hyperparameters of BDT using Optuna.

Statistical analysis 00000●0

Results. Confusion matrix

- Confusion matrix does not show the performance of the classifier for different discriminator threshold which is crucial for highly-imbalanced problem.
- Maximising True positive (TP) value.
- False negative (FN) value shows the ineffiecency of the classifier (how many nutau were classified incorrectly). Not dangerous for searching for nutau signal.
- False positive (FP) value shows the number of incorrectly classified numu events. Dangerous for searching for nutau signal.

Random test data sampling: TP/(FP + TP) = [0.69, 0.94] in 95% Cl.

Results. ROC-AUC and DET curves

- Varying the discriminator threshold from 0 to 1, one can choose the classifier with the required performance.
- ROC-AUC tradeoff btw. TP and FP, DET tradeoff btw. FN (inefficiency) and FP.
- Example: discriminator threshold is chosen with 20% of ineffeciency and 20% of false events.

Thank you!

vasilisa.guliaeva@cern.ch

BDF/SHiP preliminary schedule

- Availability of test beams challenging
- ▶ Important to start data taking > 1 year before LS4

Accelerator schedule	2022 2023 2024 2025	2026 2027 2028 2029 2030 2031 2032	2033
LHC	Run 3	LS3 Run 4	LS4
SPS (North Area)			
BDF / SHiP	Study Besign and prototyping	Production / Construction / Installation Operation	
Milestones BDF	DR studies	PRR B	
Milestones SHiP	TDR studies	↑ WRR WB	
	î		
	Approval for TDR	Submission of TDRs Facility commissioning	

CCDIS $u_{ au}$ (hadronic decay) & NCDIS u_{μ}

- 16 Scint layers (out of 50 layers)
 - Energy deposition
 - Energy of hadron cluster
 - Shower CoG in XY plane
 - Shower width in XY plane
- in total: 81 parameter

CCDIS $u_{ au}$ (hadronic decay) & NCDIS u_{μ}

- Most valuable: energy of hadron cluster, energy deposit in layers;
- Split measures how often a feature is used to split the data in decision trees during training, which helps assess the feature's importance in making decisions.

CCDIS ν_{τ} (hadronic decay) & NCDIS ν_{μ}

Vasilisa Guliaeva, Anna Anokhina

7th ICPPA-2024 22-25 October 2024

Impact parameter (IP) of muons w.r.t. to the interaction point

The difference btw 2 cases is the path before the decay of tau in the nutau case. IP should be larger in this case:

$$\mathsf{IP} = c\gamma\tau\sin(\theta) =$$

$$c\tau \frac{E_{\tau}}{m_{\tau}} \sqrt{1 - (p_{\tau,z}/P_{\tau})^2}$$

 Multiple scattering of muon/tau also contributes into IP. Theory. Calculate the contribution into IP of muon due to the tau decay for nutau case for (E_τ, θ_τ) in SHiP case.

$$\mathrm{IP}_{\mathrm{max}}^\tau \sim 10^{-2} \mathrm{~cm}$$

CCDIS u_{τ} (leptonic decay) & CCDIS u_{μ}

- Non-trivial problem due to:
 - High-imbalanceness of the classes (300:1);
 - overlaping feature distributions.

Results. ROC-AUC and DET curves

- Varying the discriminator threshold from 0 to 1, one can choose the classifier with the required performance.
- ROC-AUC tradeoff btw. TP and FP, DET tradeoff btw. FN (inefficiency) and FP.
- Metrics:
 - True positive rate = $\frac{TP}{Actual positive} \leftarrow Maximising$
 - False positive rate = $\frac{FP}{Actual negative} \leftarrow Dangerous$
 - False negative rate = $\frac{FN}{Actual positive} \leftarrow Not dangerous$

