

DarkSHINE – Search for Light Dark Matter at the SHINE facility in Shanghai

Danning Liu, on behalf of the DarkSHINE R&D Term

October, 2024, Moscow, Russia

Dark Matter Evidence

- Dark Matter (DM) evidence, from astronomical observations and gravitational effects
 - Galactic rotation curves, Gravitational lensing, Cosmic Microwave Background ...

TSUNG-DAO LEE INSTITUTE

- Direct Detection: nuclear recoils from DM-nuclei scattering (PandaX, XENONnT, LZ, CDEX ...)
- Indirect Detection: products from DM annihilation (DAMPE, IceCube ...)
- **Colliders**: DM production in high-energy collisions, especially focusing on the productions of a SM particle with large missing E_T

TSUNG-DAO LEE INSTITUTE

Danning Liu | 7th ICPPA, Moscow, Russia

Dark Matter Search at Accelerator Experiments

 $m_{\rm DM}$

Dark Photon Theory

- Introduce extra $U(1)_X$ symmetry \rightarrow New Gauge Field X \rightarrow Dark Photon Mediator A'
- $U(1)_{em} \rightarrow U(1)_{em} \times U(1)_X$

(3)

 $\mathcal{E}X_{\mu\nu}F^{\mu\nu}$

- **Renormalizable and Gauge Invariant**
- Straightforward for experimental search •
 - Free param, kin. mixing (ϵ), mass ($m_{A'}$)

B. Holdom, Phys. Lett. B 166, 196 (1986) R. Foot & X.-G. He, Phys. Lett. B 267, 509 (1991)

Physics Processes and Anticipated Signatures

Processes to search for **dark photon A'**: Bremsstrahlung, Annihilation, Meson decay and Drell-Yan process

- **Goal:** put constraints on the kinetic mixing parameter ε .
- Challenge: small production rate → suppress bkg. from SM processes.
- Experimental signatures: missing energy, missing momentum.

The SHINE Facility

- Shanghai High Repetition-Rate XFEL and Extreme Light Facility (SHINE) can provide high repetition rate single electron beams → with dedicated kicker to be designed and deployed
 - Electron energy: 8 GeV, Rep. Rate: 1 MHz
 - Beam intensity: 100 pC (6.25E8 electrons/bunch)
 - ~ 3×10^{14} electrons-on-target (EOT) per year

DarkSHINE Experiment Conceptual Design

The Dark SHINE detector hardware technical R&D is carried out in parallel to the full detector system simulation and prospective study/optimization

Additional system:

Readout electronics, trigger system, TDAQ, magnetic system (1.5 T), etc.

DarkSHINE Experiment Conceptual Design

The Dark SHINE detector hardware technical R&D is carried out in parallel to the full detector system simulation and prospective study/optimization

Determination of Signal Selections

Danning Liu | 7th ICPPA, Moscow, Russia

Signal Selections

Analysis Details

李波道研究所 TSUNG-DAO LEE INSTITUTE

- Cut Efficiencies:
 - Signal Cut efficiencies as function of dark
 photon mass
 - 67% efficiency arrived and applied to extract significance
- Event Cutflow for each background samples on event numbers

	EN_ECAL	PN_ECAL	GMM_ECAL	EN_target	PN_target	GMM_target	Hard_brem	Inclusive
Total events	2.48×10^7	1.66×10^{8}	1.74×10^{7}	1.09×10^8	1.05×10^7	1.05×10^7	1.02×10^7	2.50×10^9
Only 1 track	1.46×10^7	1.17×10^8	1.52×10^{7}	6.38×10^6	6.17×10^{5}	77	8.03×10^{6}	2.11×10^9
$p_{\text{tag}} - p_{\text{rec}} > 4 \text{ GeV}$	1091	5531	707	6.08×10^6	5.73×10^{5}	1	7.19×10^6	1.20×10^8
$E_{ m HCAL}^{ m total}$ < 100 MeV	135	1348	0	322135	75501	0	1.19×10^8	2.89×10^7
$E_{\rm HCAL}^{\rm MaxCell} < 10 { m MeV}$	56	676	0	141808	27949	0	1.12×10^8	2.72×10^{7}
$E_{\rm HCAL}^{\rm MaxCell} < 2 { m MeV}$	30	363	0	63644	9999	0	1.01×10^8	2.46×10^7
$E_{\rm ECAL}^{\rm total} < 2.5 { m ~GeV}$	0	0	0	0	0	0	0	0

< Science China > Publication with Highlights

Sci. China-Phys. Mech. Astron., 66(1): 211062 (2023)

 $m_{A'}[MeV]$

- Anticipated to have the sensitivity improved by one order of magnitude compared to other experiment (e.g. NA64)
- Aim to deliver 10¹⁶ EOT stat. and cover most of the sensitivity regions of interests

TSUNG-DAO LEE INSTITUTE

"Editor' s Focus"

Highlight remarks

Sci. China-Phys. Mech. Astron. 66(1): 211063 (2023)

Sci. China-Phys. Mech. Astron. 66(1): 211061 (2023)

Hardware R&D: Tracking

<u>arXiv:2310.13926</u> Nucl Sci Tech 35, 201 (2024)

Tracker

- Incident and recoil electron tracks.
- Tagging tracker (7 layers) + recoil tracker (6 layers).
- Two silicon strip sensors w/ a small angle (0.1rad).
- Resolution: $10\mu m$ (horizontal), $60\mu m$ (vertical).

AC-LGAD silicon strip sensor 1x1 mm² designed, in collaboration with Prof. Zhijun Liang and Prof. Mei Zhao from IHEP.

Hardware R&D: Crystal ECAL

Electromagnetic Calorimeter:

- Designed resolution: better energy resolution than 5%.
- LYSO crystal $(Lu_{(1-x-y)}Y_{2y}Ce_{2x}SiO_5)$:
 - High light yield (30000 p.e/MeV) with good linearity
 - Short decay time (40 ns)
- 21×21×11 crystals, 2.5cm×2.5cm×4cm
- Readout with SiPM and waveform sampling
- More intrinsic radiation and radioactive source tests.

TSUNG-DAO LEE INSTITUTE

Danning Liu | 7th ICPPA, Moscow, Russia

arXiv: 2407.17800 submitted to NST

Hardware R&D: HCAL

Nucl. Sci. Tech. 35, 148 (2024)

Hadronic Calorimeter:

- Veto backgrounds ($1.5 \times 1.5 \times 2.5 m^3$, $\sim 11 \lambda$)
- Plastic scintillator + iron absorber
 - Plastic scintillator: 90 degree rotation between two adjacent layers
 - Wavelength shifter fiber + SiPM
- Side-HCAL: encircling the ECAL
- Design has been optimized

Veto inefficiency

Particle Energy[MeV]	n	k ⁰	π^0	р
100	1.17E-03	3.16E-02	7.30E-06	3.07E-02
500	1.84E-05	3.30E-06	1.00E-07	8.04E-06
1000	3.70E-06	4.30E-06	1.00E-07	1.00E-07
2000	2.70E-06	1.15E-05	1.00E-07	1.00E-07

TSUNG-DAO LEE INSTITUTE

Collaboration and Highlights at DarkSHINE

Journal Paper Publications:

- Sci. Chin.-Phys. Mech. Astron., 66(1) : 211062 (2023)
- Nucl. Sci. Tech. 35, 148 (2024)
- Nucl. Sci. Tech. 35, 201 (2024)
- arXiv:2407.17800 (submitted to NST)
- arXiv:2407.20723 (submitted to JINST)

Conference Talks :

- ICHEP 2024
- Lepton Photon 2023
- Dark Matter 2023
- HKUST-IAS-HEP 2024、2023
- AEI 2023、2022
- IPAC 2023

٠

TSUNG-DAO LEE INSTITUTE

TSUNG-DAO LEE INSTITUTE

Danning Liu | 7th ICPPA, Moscow, Russia

Summary

- The DarkSHINE: a fixed-target experiment searching for dark matter.
- The DarkSHINE will be almost background free experiment
 - Expected 0.02 background in 3x10¹⁴ electron-on-target (w.r.t 1 year. running)
 - Above 50% dark photon signal acceptance efficiency
- The DarkSHINE has competitive sensitivity (<u>Sci. China-</u> Pay. Mech. Astron., 66(1):211062 (2023))
 - Sensitive to most of phase space predicted by models with 3 years running
- Detector key technology R&D studies are going on (arXiv:2407.20723, Nucl. Sci. Tech. 35, 148 (2024), Nucl Sci Tech 35, 201 (2024))
- With more physics opportunities ahead, please stay tuned!

Experimental Approaches

High repetition rate single electron beam

- More striking recod of single electron-ontarget event energy loss after recoiling
- Requirements: fast detector response and readout electronics, radiation hardness to allow high e-on-target statistics
- Energy + Momentum loss detection
 - Synergy of high precision tracking and calorimetry

(ECAL)

(Target [350um])

visible backgrounds

invisible backgrounds << 10⁻¹

< 21 >

 $\rightarrow \mu^+ \mu^-$ (Target [350um]) 10^{-8}

10-'

10-7

 $\gamma \rightarrow e^+e^-$ (Target [350um]) photo-nuclear (ECAL)

 $\gamma \rightarrow \mu^+ \mu^-$ (ECAL

photo-nuclear (Target [350um])

TSUNG-DAO LEE INSTITUTE

Danning Liu | 7th ICPPA, Moscow, Russia

Monte Carlo Simulations

Simulated background statistics:

Process	Generate events	Branching ratio	EOTs
Inclusive	2.5×10^{9}	1.0	2.5×10^9
Bremsstrahlung	1×10^{7}	6.70×10^{-2}	1.5×10^{8}
GMM_target	1×10^{7}	$1.5(\pm 0.5) \times 10^{-8}$	4.3×10^{14}
GMM_ECAL	1×10^{7}	$1.63(\pm 0.06) \times 10^{-6}$	6.0×10^{12}
PN_target	1×10^{7}	$1.37(\pm 0.05) \times 10^{-6}$	4.0×10^{12}
PN_ECAL	1×10^{8}	$2.31(\pm 0.01) \times 10^{-4}$	4.4×10^{11}
EN_target	1×10^{8}	$5.1(\pm 0.3) \times 10^{-7}$	1.6×10^{12}
EN_ECAL	1×10^{7}	$3.25(\pm 0.08) \times 10^{-6}$	1.8×10^{12}

Event cut-flow of each background process:

Table 4	Event cut flow for each backgroun	d sample in Table 2.	The selection efficiencies	of each cut are listed in the table (%)
---------	-----------------------------------	----------------------	----------------------------	---

	EN_ECAL	PN_ECAL	GMM_ECAL	EN_target	PN_target	GMM_target	Hard_brem	Inclusive
Total events	100	100	100	100	100	100	100	100
Only 1 track	58.87	70.48	87.36	5.85	5.88	< 10 ⁻³	78.73	84.40
$p_{\rm tag} - p_{\rm rec} > 4 { m ~GeV}$	0.0044	0.0033	0.0041	5.58	5.46	$< 10^{-5}$	70.49	4.80
$E_{\rm HCAL}^{\rm total} < 100 { m MeV}$	< 10 ⁻³	< 10 ⁻³	0	0.30	0.72	0	69.61	4.76
$E_{\rm HCAL}^{\rm MaxCell} < 10 { m MeV}$	< 10 ⁻³	< 10 ⁻³	0	0.13	0.27	0	65.00	4.48
$E_{\rm HCAL}^{\rm MaxCell} < 2 { m MeV}$	< 10 ⁻³	< 10 ⁻³	0	0.058	0.095	0	58.14	4.04
$E_{\rm ECAL}^{\rm total} < 2.5 { m ~GeV}$	0	0	0	0	0	0	0	0

Software Framework Optimization

< 23 >

TSUNG-DAO LEE INSTITUTE

Danning Liu | 7th ICPPA, Moscow, Russia

How DM Shining at the DarkSHINE Experiment?

TSUNG-DAO LEE INSTITUTE

Other Kinematic Distributions

Acceptance in the Signal Region

- 60% signal events survive the cut-flow, no background survive (2.5e9)
- Acceptance efficiency drops in:
 - Low-mass region of a few MeV: tight energy cuts.
 - High-mass region above 1 GeV: particles with large incident/recoil angle go into the HCAL directly.

Background Estimation

Expected background yields go down quickly at lower ECAL energy.

In order to estimate background yields in 10¹⁴ EOT, extrapolation method is used

- fit from inclusive background process
- extrapolation from low energy samples

Hardware R&D: Tracking

Working point W11: 350V W12: 150V

Jer's Descarate S ۰.

TSUNG-DAO LEE INSTITUTE

Danning Liu | 7th ICPPA, Moscow, Russia

20

Hardware R&D: ECAL

- Experiments based on LYSO and SiPM
- a. LYSO intrinsic radiation from $^{176}_{~71}Lu \rightarrow ^{176}_{~72}Hf$
- c. Cosmic ray test
- e. Light yield changed with crystal size
- b. Uniformity test with ⁶⁰₂₇Co source
- d. SiPM dynamic range test

Baseline design of each crystal: X,Y = 2.5 cm, Z = 4 cm (radiation length: 1.14 cm)

Hardware R&D: HCAL

- Scintillator test in TDLI lab
 - SiPMs performance are studied first, both size, gain and noise are considered, and picked one type (Hamamatsu S13360-3050, gain 1.7e6) for the rest tests
- Radioactive source test for uniformity
 - Very good uniformity of the scintillator along the 75 cm side

Radioactive source test

- Various types of scintillator are tested : sizes (75cm×5cm/10cm×1cm/2cm), number of fiber grooves/used, manufacturer/composition are tested
- Noise test: to decide the minimal cut we could use in analysis

Scintillator (w/ & w/o wrap) WLS & SiPM Fiber collimation

Cosmic ray test: photon yields test (left) and noise test (right)

More Physical Motivations

- Dark SHINE could explore a vast array of sub-GeV physics with unique sensitivity
 - New force carriers coupling to electrons, decaying visibly or invisibly
 - Quasi-thermal DM, e.g. asymmetric DM or ELDER DM
 - New long-lived resonances produced in the dark sector (SIMP)
 - Freeze-in models with heavy mediators
 - Axion-like particles (ALP)
 - Milli-charged dark sector particles
 - Probe neutrino-nuclear interactions (vN) via electro-nuclear (eN) measurements and constrain nuclear models

۲