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BM@N experiment
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» Heavy-lon beam with energies up to 4A GeV
interacts with fixed target

= nvestigate the equation-of-state (EOS) of > Z.
dense nuclear matter which plays a central NI g
role for the dynamics of core collapse
supernovae and for the stability of neutron
stars.

» Azimuthal properties of produced particles -
important tool for EOS studies
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*we focus on neutron flow and yields




Motivation

Measurements of neutron flow and yields require reconstruction of neutrons

Neutron reconstruction task:

e |dentify neutrons produced in reaction in presence of background
= yse of high granularity

e Reconstruct neutron kinematics:
e Kinetic energy — time-of-flight (ToF) method

e Multi-parameter task = may benefit from ML-based methods
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Highly granular time-of-flight neutron

detector (HGND)

Longitudinal structure Active layer

\

A

scintillator \ photodetector
*(2x) 8 layers: 3cm Cu (absorber) + 2.5cm Scintillator  +scintillator cells:
+ 0.5cm PCB; 1st layer — ‘veto’ before absorber esize: 4x4x2.5 cms3,
= [otal length: ~0.om, ~1.5 A, etotal number of cells: 968 (x2)
= neutron detection efficiency ~60% @ 1 GeV *individual readout by SIPM
* [ransverse size: 44x44 cm? »expected time resolution per cell: ~150 ps

» 11x11 scintillator cell grid
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Configuration and Simulations
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*HGND sub-detectors are located at 10° to the beam axis at ~7m from the target

 Monte-Carlo event simulations:
e DCM-QGSM-SMM model + Geant4 v11.02 FTFP-BERT

* ~0.5M events Bi+Bi @ 3 AGeV
* Only top sub-detector will be discussed further
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Dataset

ToF energy for n% hypothesis: . . L
i yP » Each hit caused by a primary neutron is linked to

1 . .
E, -=m 1) corresponding MC particle

V1 -2 Multiolici . . ‘ .
.t _ * Multiplicity counts require existence of ‘Head’ hit
thit+N(0,0 = 150ps) < 40ns with 8(Eror) < 0.3

e hits with Etor>10GeV are set to 10 GeV
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Graph Neural Networks (GNN)

Why Graph Neural Networks: Message passing architecture
» Natural vector event representation Key Idea:

» Detector cell hits as graph nodes e Edges propagate information between nodes in a
» Easily applied to sparse data with variable trainable manner to encode local graph structures

iInput size e Node embeddings are then aggregated to a

» Typically we have signal only in small problem-specific value, e.qg.:

fraction of sensors e Graph/hit class “probability” — signal/background

» Captures event structures e Jarget value — neutron energy
» Increasing number of successful

implementations in HEP () m -

N SEL e 9
N Graph. o Messages. o Propagation. |

J. Gilmer et al.,, "Neural message passing for quantum chemistry,” 2017.
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https://arxiv.org/pdf/2007.13681.pdf

GNN Model

Graph construction: Output
* Nodes — hits. Observables per hit: Training objective:
* hit coordinates; Edep > 3 MeV ~ 0.5 MIP; * Neutron ‘head’ class for each hit
EToF  Binary cross entropy loss function
» additional global event node connected to  Neutron energy prediction for each hit to correct ToF
each hit node e Mean squared error loss function
« 139004 graphs * only on MC truth neutron hits

* Constructed event graphs are split 50/50% to
train and test prccedure _. ............................................................................................................... ._

GNN e —
Heterogenius GNN Model: —| Hitclass
e Graph convolution layers between hit .8 prediction
nodes. Hidden state size: 512 ttention [ Hit energy
» Graph attention layers between hit and | Lprediction
global node. Hidden state size: 512 xe‘°°""°'”"°" output

x8 attention

------------------------------------------------------------------------------------------------------------------

{(gi‘l PyTorch Geometric library
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https://arxiv.org/abs/1902.07153
https://arxiv.org/abs/1710.10903

Neutron Head Prediction
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Simple Clustering Algorithm

» Gaussian Mixture clustering approach to find best neutron cluster per event N
» Variables: hit coordinates, Epred, ‘head’ score — 5 dimentions Purity =——

» Up to 3 5D-gaussian components for each event select component with
max(mean ‘head’ score) Efficiency = ]]\\77 true
neutrons

* Enearest — closest neutron energy to prediction (mean Epred per cluster)
Single neutroneconstruction

performance
% 1.0 | BN all primary neutrons
c_U D Enearest
> 08 1 Epredicted
_9 —_—— Epredicted for fake
D 6.
c 0.6
0.4-
0.21 —— Purity
—— Efficiency
0.0— - - . .
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<‘head’ score> threshold

Enearest [GGV]
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Summary and Outlook

* Machine learning approach for the neutron reconstruction in the HGND is
presented and preliminary results are discussed.

» Graph Neural Networks are used to capture local event structures

» Single neutron reconstruction performance is estimated to have both purity and
efficiency at the level of 60%

» Higher multiplicities to be addressed
» Estimation of neutron flow measurement performance is ongoing
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Event counts
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» Good separation of neutron events as a
binary problem

* Higher multiplicities require more
sophisticated algorithms
* Multiplicity prediction -> unsupervised
clustering

GNN » Hit class
| prediction
| x8 _> Hit energy
i hits : prediction
g attention

N neutrons |

x8|convolution orediction

x8 attention
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Reconstruction example

neutron score: 0.3053866344417157
neutron score: 0.669092359665289
neutron score: 0.1657184230945527
neutron score: 0.022741372617821658
1gm scores: [0.45783916]
2gm scores: [0.26996891 0.59203222]
3gm scores: [0.34623281 0.59203222 0.21912647]
1 cluster prediction: [1.74045778]
2 cluster prediction: [1.48013984 1.92639919]
3 cluster prediction: [1.53982338 1.92639918 1.44035095]

MG truth neutron energies * Delayed depositions have lower
. O 2.1037049999999997 ‘head’ score
* Same neutron produce similar
30 score for ‘heads’
. s | . » Gaussian Mixture approach
*tes ol 'E potentially can be extended to
0l reconstruct neutron with
04 multiplicities > 1
» Combination with ‘classic’
y 02 cluster algorithm is foreseen
*all MC truth contributions are circled *only MC truth heads are circled
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Energy correction

EToF:
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EOS for high baryon density matter

The binding energy per nucleon: EA (,0, 5) — EA (,0, O) -+ Esym (,0)52 -+ 0(54)

Symmetric matter Symmetry energy
= istros & Ho@m 0 = (pn — pp)/p - Isospin asymmetry
'; 80~ FOPI-LAND v  mass(Skyrme)
— 100} S I & maDT  +» Neutron flow measurements are
g 2 o & HICGsodi) -+ _ essential to further constrain
E S0 * | symmetry energy
> Lo ‘o
= e » Sensitive observables:
310} g
g % LeFoveetdl Lo | Anisotropy flow coefficients:
o w= Lynch et al. from Fuchs et al.- E _
= 44 Oliinychenko et al - dN
= Danielewicz et al. E _ ——xl+ ZZ v, cos[n(¢-Wgp)], v, =(cos[n(P—¥gp)])
Walecka model > de =1
ﬂﬂﬂﬂﬂ Fermi gas -
1 l l l l l l l : l l l l l l l l l 0 ! ! ! ! ! ! ! ! | | ! ! ) | . . ! | |
1 2 3 4 3 0 0.5 1 15 )
baryon density ng/n, baryon density ng/n,

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080
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Anisotropic Flow Coefficients

Simplified estimation of coefficient measurement performance
using classification-based neutron reconstruction in the HGND

* Data source: all primary neutrons from initial DCM-QGSM-SMM
Bi+Bi @ 3 AGeV reaction

e MC truth information

* primary neutrons randomly sampled according to classifier
efficiency

* mixed with uniformly distributed v1,2 as background (Pt and Ycm
are sampled from selected neutrons) according to classifier purity

V1 VS Ycwm selection criteria:
* Exin> 0.4 GeV

* |Impact parameter € (6, 9) fm

e Pr& (1., 1.5 GeV
= 279802 neutrons initially

vi amplitude increases with purity, stat. uncertainty is affected by
event yield

v1 Vs rapidity distortion
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