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BM@N experiment
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Studies of Baryonic Matter at the Nuclotron 
(NICA, JINR Dubna)

•  Heavy-Ion beam with energies up to 4A GeV 
interacts with fixed target

➡ investigate the equation-of-state (EOS) of 
dense nuclear matter which plays a central 
role for the dynamics of core collapse 
supernovae and for the stability of neutron 
stars.

•  Azimuthal properties of produced particles - 
important tool for EOS studies

•we focus on neutron flow and yields beam
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Motivation
Measurements of neutron flow and yields require reconstruction of neutrons 

Neutron reconstruction task: 
• Identify neutrons produced in reaction in presence of background 
➡ use of high granularity 

• Reconstruct neutron kinematics: 
• Kinetic energy — time-of-flight (ToF) method 

• Multi-parameter task ⇒ may benefit from ML-based methods 
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•(2x) 8 layers: 3cm Cu (absorber) + 2.5cm Scintillator 
+ 0.5cm PCB; 1st layer  — ‘veto’  before absorber 
➡Total length: ~0.5m, ~1.5 λin 
➡ neutron detection efficiency ~60% @ 1 GeV 
•Transverse size: 44x44 cm2 

•11x11 scintillator cell grid

Active layerLongitudinal structure

Veto Cu Scint

•scintillator cells: 
•size: 4x4x2.5 cm3,  
•total number of cells: 968 (x2) 
• individual readout by SiPM  
•expected time resolution per cell: ~150 ps

       Highly granular time-of-flight neutron 
detector (HGND)High Granularity Neutron detector 

M.Kapishin                            BM@N  experiment  

HGN detector parameters: 2 sub-detectors 
with 8 layers each (~1.5 λint) 
- 11 x 11 cells in one layer with SiPM read-out 
- first layer works as VETO 
- next 7 layers: 3cm Cu + 2.5cm scintillator 
- FPGA based fast TDC read-out with 
additional ToT amplitude measurement 
 - time resolution of one scint. cell ~ 120ps 
 - neutron detection efficiency: > 60% @ 1GeV 
 

Acceptance of HGN 
detector 

mid rapidity 
    ~1.16 

XeCsI@3.9AGeV 
          neutrons 

2 positions of HGN detector at BM@N: at 10o and 17o 

44
cm

 

→ plan to construct in 2024-25 INR RAS, JINR, NRC Kurchatov 

44cm 
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Configuration and Simulations
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•HGND sub-detectors are located at 10º to the beam axis at ~7m from the target 
•  Monte-Carlo event simulations: 

•  DCM-QGSM-SMM model + Geant4 v11.02 FTFP-BERT 
• ~0.5M events Bi+Bi @ 3 AGeV  
•  Only top sub-detector will be discussed further
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Dataset
ToF energy for n0 hypothesis:





• thit+𝓝(0,𝜎 = 150ps) < 40ns

• hits with EToF>10GeV are set to 10 GeV

EToF = mn( 1
1 − β2

− 1)

Hit EToF distribution EToF vs MC truth correlation

Eneutron [GeV]EToF [GeV]

•  Each hit caused by a primary neutron is linked to 
corresponding MC particle 

•  Multiplicity counts require existence of ‘Head’ hit  
with 𝛿(EToF) < 0.3

Primary neutron multiplicity
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Graph Neural Networks (GNN)
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Why Graph Neural Networks: 
• Natural vector event representation 

• Detector cell hits as graph nodes 
• Easily applied to sparse data with variable 

input size 
• Typically we have signal only in small 

fraction of sensors 
• Captures event structures 
• Increasing number of successful 

implementations in HEP

Message passing architecture  
Key idea: 
• Edges propagate information between nodes in a 

trainable manner to encode local graph structures 
• Node embeddings are then aggregated to a 

problem-specific value, e.g.: 
• Graph/hit class “probability” — signal/background 
• Target value — neutron energy 

https://arxiv.org/pdf/2007.13681.pdf
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GNN Model
Graph construction: 
• Nodes — hits. Observables per hit:


• hit coordinates; Edep > 3 MeV ~ 0.5 MIP; 
EToF


• additional global event node connected to 
each hit node


• 139004 graphs

• Constructed event graphs are split 50/50% to 

train and test procedure


Output 
Training objective: 
• Neutron ‘head’ class for each hit 

• Binary cross entropy loss function 
• Neutron energy prediction for each hit to correct ToF 

• Mean squared error loss function  
• only on MC truth neutron hits

hits glob
x8

x8 convolution

attention

x8 attention

Hit class 
prediction

GNN

output

PyTorch Geometric library
8

Hit energy 
prediction

Heterogenius GNN Model: 
• Graph convolution layers between hit 

nodes. Hidden state size: 512 
• Graph attention layers between hit and 

global node. Hidden state size: 512

https://arxiv.org/abs/1902.07153
https://arxiv.org/abs/1710.10903
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Neutron Head Prediction

‘head’ score

‘head’ score
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• Overall good hit classification 
performance 

• Requires additional clustering 
algorithms to be used in neutron 
reconstruction

TPR =
TP

TP + FN
FPR =

FP
TN + FP

signal efficiency fake rate

Positive Negative
Positive TP FN
Negative FP TN

predicted
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Simple Clustering Algorithm

Single neutroneconstruction 
performance

Enearest [GeV]

E p
re

d [
G

eV
]

<‘head’ score> threshold

• Gaussian Mixture clustering approach to find best neutron cluster per event 
• Variables: hit coordinates, Epred, ‘head’ score — 5 dimentions  
• Up to 3 5D-gaussian components for each event select component with 

max(mean ‘head’ score) 
• Enearest — closest neutron energy to prediction (mean Epred per cluster)

Ekin [GeV]
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Purity =
Nreco true

Nreco all

Efficiency =
Nreco true

Nneutrons

Purity  ~0.63 
Efficiency  ~0.62
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Summary and Outlook
•  Machine learning approach for the neutron reconstruction in the HGND is 
presented and preliminary results are discussed.  
•  Graph Neural Networks are used to capture local event structures 
•  Single neutron reconstruction performance is estimated to have both purity and 
efficiency at the level of 60% 

• Higher multiplicities to be addressed 
•  Estimation of neutron flow measurement performance is ongoing



Backup
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Neutron Multiplicity Prediction
• Good separation of neutron events as a 

binary problem 
• Higher multiplicities require more 

sophisticated algorithms 
• Multiplicity prediction -> unsupervised 

clustering 
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score 0 neutrons

score 2 neutrons score 3 neutrons

score 1 neutron

hits glob
x8

x8 convolution
N neutrons 
prediction

attention

x8 attention

Hit class 
prediction

GNN

output

Hit energy 
prediction
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Reconstruction example
0 neutron score: 0.3053866344417157 
1 neutron score: 0.669092359665289 
2 neutron score: 0.1657184230945527 
3 neutron score: 0.022741372617821658 
1gm scores:  [0.45783916] 
2gm scores:  [0.26996891 0.59203222] 
3gm scores:  [0.34623281 0.59203222 0.21912647] 
1 cluster prediction: [1.74045778] 
2 cluster prediction: [1.48013984 1.92639919] 
3 cluster prediction: [1.53982338 1.92639918 1.44035095] 

MC truth neutron energies • Delayed depositions have lower 
‘head’ score 

• Same neutron produce similar 
score for ‘heads’ 

• Gaussian Mixture approach 
potentially can be extended to 
reconstruct neutron with 
multiplicities > 1 

• Combination with ‘classic’ 
cluster algorithm is foreseen

*only MC truth heads are circled*all MC truth contributions are circled
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Purity  0.6237777777777778 
Efficiency  0.6244369056226017

Purity  0.6299444444444444 
Efficiency  0.6242224057252959

Energy correction

hits glob
x8

x8 convolution
N neutrons 
prediction

attention

x8 attention

Hit class 
prediction

GNN

output

Hit energy 
prediction

EToF: EGNN:
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• Neutron flow measurements are 
essential to further constrain 
symmetry energy 

• Sensitive observables: 

16

EOS for high baryon density matter

Symmetric matter

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

The binding energy per nucleon:

- Isospin asymmetry
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Anisotropy flow coefficients:

Symmetry energy



Simplified estimation of coefficient measurement performance 
using classification-based neutron reconstruction in the HGND 
• Data source: all primary neutrons from initial DCM-QGSM-SMM 

Bi+Bi @ 3 AGeV reaction 

• MC truth information

• primary neutrons randomly sampled according to classifier 

efficiency

• mixed with uniformly distributed v1/2 as background (PT and Ycm 

are sampled from selected neutrons) according to classifier purity

• v1 vs YCM selection criteria:


• Ekin > 0.4 GeV

• Impact parameter  (6, 9) fm

• PT  (1., 1.5) GeV

➡ 279802 neutrons initially


v1 amplitude increases with purity, stat. uncertainty is affected by 
event yield

∈
∈
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Anisotropic Flow Coefficients
v1 vs rapidity distortion


