

Status of the BM@N experiment at NICA/Nuclotron BM@N

M.Kapishin

NICA Heavy Ion Complex

BM@N: heavy ion energy 1- 3.8 GeV/n, beams: d to Bi, Intensity ~few 10⁶ Hz (Bi)

Baryonic Matter at Nuclotron (BM@N) Collaboration:

5 Countries, 13 Institutions, 214 participants

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Joint Institute for Nuclear Research;
- Institute of Nuclear Research RAS, Moscow
- NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics, NRC KI, Moscow

- Moscow Engineer and Physics Institute
- Skobeltsyn Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow
- Institute of Physics and Technology, Almaty
- Physical-Technical Institute
 Uzbekistan Academy of Sciences, Tashkent
- High School of Economics, National Research University, Moscow

Heavy Ion Collision Experiments

BM@N: $\sqrt{s_{NN}}$ = 2.3 - 3.3 GeV

MPD: $\sqrt{s_{NN}} = 4 - 11 \text{ GeV}$

BM@N competitors:

HADES BES (SIS): Au+Au at $\sqrt{s_{NN}}$ = 2.42 GeV, Ag+Ag at $\sqrt{s_{NN}}$ = 2.42 GeV, 2.55 GeV.

STAR BES (RHIC): Au+Au at $\sqrt{s_{NN}}$ = 3-200 GeV

EOS of symmetric and asymmetric nuclear matter

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

Hyperon yield in 4A GeV Au+Au: soft EOS (K=240 MeV) / hard EOS (K=350) MeV

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$E_A(\rho,\delta) = E_A(\rho,0) + E_{sym}(\rho) \cdot \delta^2$$

with
$$\delta = (\rho_n - \rho_p)/\rho$$
 E/A(ρ_o) = -16 MeV

Curvature defined by nuclear incompressibility: $K = 9\rho^2 \delta^2(E/A)/\delta\rho^2$

- ► Study symmetric matter EOS at ρ =3-5 ρ 0
- → elliptic flow of protons, mesons and hyperons
- → sub-threshold production of strange mesons and hyperons
- → extract K from data to model predictions
- ► Constrain symmetry energy E_{sym}
- → elliptic flow of neutrons vs protons
- → sub-threshold production of particles with opposite isospin

New probe of the high-density EOS: subthreshold production of multi-strange (anti-)hyperons via sequential collisions

Study of EoS: Collective flow.

of identified particles

 \gt collective flow of identified particles $(\Pi, K, p, \Lambda, \Xi, \Omega, ...)$ driven by the pressure gradient in the early fireball

 \rightarrow Nuclear incompressibility: K = 9p² δ^2 (E/A)/ δ p²

Azimuthal angle distribution: $dN/d\phi \propto (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)$

Proton flow in Au+Au collisions in-plane flow $\sim v_1$ out-of-plane flow v_2

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

M.Kapishin

BM@N experiment

Directed and elliptic flow at BM@N

- Good agreement between reconstructed and model data
- Approximately 250-300M events are required to perform multi-differential measurements of v_n

Rapidity dependence of v2 vs EOS

Rapidity dependence of v2 for protons and fragments is sensitive to EOS

HM – hard EOS, K=376 MeV SM – soft EOS, K= 200 Mev

FOPI data: Nucl. Phys. A 876 (2012) 1

IQMD: Nucl Phys. A 945 (2016)

Heavy-ions A+A: Hypernuclei production

- ☐ In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities
- ☐ Maximal yield predicted for \sqrt{s} =4-5A GeV (stat. model) (interplay of Λ and light nuclei excitation function)
- ► BM@N energy range is suited for search of hyper-nuclei

Production of π^+ , K^+ , p, d, t in 3.2 AGeV argon-nucleus interactions

Production of π^+ and K^+ mesons in 3.2 AGeV argon-nucleus interactions

Full centrality range

Production of π^+ and K^+ mesons in 3.2 AGeV argon-nucleus interactions

M.Kapishin

BM@N experiment

Deuterons in 3.2 AGeV argon-nucleus interactions: dN/dy dependence on y

Centrality 0-40%

→ V.Kolesnikov talk at Heavy Ion physics

$$y^* = y_{lab} - y_{CM}, y_{CM} \approx \langle y(\pi) \rangle$$

Ar+C: $\langle y(\pi) \rangle = 1.27$
Ar+Pb: $\langle y(\pi) \rangle = 0.82$

- dN/dy spectrum softer in interactions with heavier target
- DCM-SMM and PHQMD models describe data shape, but are lower in normalization by factor 4

dN/dy

Deuterons: <m₁> dependence on y

Centrality 0-40%

 $y^* = y_{lab} - y_{CM}, y_{CM} \approx \langle y(\pi) \rangle$ $Ar+C: \langle y(\pi) \rangle = 1.27$

Ar+Pb: $\langle y(\pi) \rangle = 0.82$

- Maximum <m_t> at mid-rapidity y*
 - PHQMD model is in better agreement with data at mid-rapidity than DCM-**SMM**

Protons: <m₊> dependence on y

Centrality 0-40%

$$y^* = y_{lab} - y_{CM}, y_{CM} \approx \langle y(\pi) \rangle$$

 $Ar+C: < y(\pi) > = 1.27$ Ar+Pb: $< y(\pi) > = 0.82$

- Maximum <m_t> at mid-rapidity y*
- **DCM-SMM** and PHQMD models describe <m₊> dependence on y

Coalescence factors B₂ and B₃

$$E_A \frac{d^3 N_A}{d \boldsymbol{p}_A^3} = B_A \left(E_p \frac{d^3 N_p}{d \boldsymbol{p}_p^3} \right)^Z \left(E_n \frac{d^3 N_n}{d \boldsymbol{p}_n^3} \right)^{A-Z}$$

$$\approx B_A \left(E_p \frac{d^3 N_p}{d \boldsymbol{p}_n^3} \right)^A,$$

 B_A is the coalescence parameter that characterizes the probability of nucleons to form nucleus A.

B₂ for deuterons

Coalescence parameter B_A depends on the nucleus mass number A, collision system, centrality, energy, and transverse momentum

B₃ for tritons

N_p·N_t / N²_d ratio

Reaction	Ar+C	Ar+Al	Ar+Cu	Ar+Sn	Ar+Pb
$N_p \cdot N_t / N_d^2$	0.53 ± 0.10	0.55 ± 0.09	0.69 ± 0.11	0.60 ± 0.07	0.59±0.06

Centrality 0-40%, use dN/dy for p,d,t in -0.18 < y^* < 0.62

$$\frac{N_t N_p}{N_d^2} = \frac{1}{2\sqrt{3}} \frac{1 + 2C_{np} + \Delta \rho_n}{(1 + C_{np})^2}$$

- BM@N observe N_p·N_t/N²_d ~0.59 ± 0.07 for Ar + C,Al,Cu,Sn,Pb interactions
- Compare BM@N with STAR, SIS-18 and AGS results for Au+Au

→ related to fluctuations of neutron density

BM@N experiment

Configuration of BM@N detector in Xe+Csl run

☐ Magnet SP-41 (J)

Xe¹²⁴ + Csl interactions: main trigger cover centrality < 70-75% (85% events) min bias trigger (7% events), beam trigger (3% events)

→ Collected >500M events at 3.8 AGeV, 50M events at 3.0 AGeV

BM@N acceptance for Λ , K_s^0 , identified p, d

Λ and K⁰_s production in Xe+CsI interactions

Life time is in agreement with PDG values: 0.2632 ns for Λ, 0.0895 ns for K⁰_s

Λ and K⁰_s production in Xe+CsI interactions

Rapidity distribution of Λ and K_s^0 compared with DCM-SMM model

\rightarrow not BM@N result yet

Transverse mass distribution of Λ and K⁰_s

Centrality from track multiplicity and forward detectors BM@N

→ A.Demanov talk at Heavy Ion physics

Parametrization of data track multiplicity N_{ch} by MC Glauber model or Negative Binominal Distribution (Γ -fit) with free parameters

- \rightarrow Extract P(b | N_{ch})
- → Γ-fit and MC-Glauber fit are in agreement

Trigger efficiency vs centrality

Collective flow of protons in Xe+CsI interactions

Azimuthal angle distribution: $dN/d\phi \propto (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)$

- BM@N Preliminary

 → M.Mamaev talk at Heavy Ion physics
- → Direct flow of protons as a function of rapidity, transverse momentum; compared with the JAM model
- → BM@@N result is in line with the energy dependence of the world data

Study of neutron emission from target spectators in ¹²⁴Xe + Csl collisions at 3.8 A GeV

BM@N Preliminary

→ N.Lashmanov talk at HEP experiment

Compare spectra with DCM-SMM model

Quality of pulse shape discrimination:

Xe+CsI data: π+-, K+-, p, He3, d/He4, t identification

Status of data analysis and plans for next physics runs

Topics of physics analyses:

- analysis of production of Λ, Ξ- hyperons, K⁰_S, K±, π± mesons, light nuclear fragments in Xe+CsI interactions;
- analysis of collective flow of protons, $\pi \pm$, light nuclear fragments
- search for light hyper-nuclei _AH³ , _AH⁴

Physics run in the Xe beam in 2025

- → beam energy scan in the range of 2-3 AGeV
- → same central tracker configuration based on silicon micro-strip and GEM detectors,
- → additional 1st vertex plane of silicon micro-strip detectors

Preparations for a physics run with the Bi beam

- Further development of the central tracker is foreseen: installation of additional station of silicon micro-strip detectors
- It is planned to put into operation a 2-coordinate (X/Y) neutron detector of high granularity to measure neutron yield and collective flow

Forward Silicon Detectors

Cosmic tests

Cosmic tests station 2

Cosmic tests station 3

Cosmic tests station 4

2-coordinate Si-plane based on STS modules

A new Si-plane based on STS modules to be installed between the **Target** and **Forward Si-Tracker**

Motivation: to improve track and momentum resolution for the low-momentum particles

Plan to install and commission the new Si plane for the next experimental run

New neutron detector of high granularity

→ plan to install in 2026

→ talks at Facilities and advanced detector technologies

2 positions of HGN detector at BM@N: at 10° and 17°

HGN detector parameters: 2 sub-detectors with 8 layers each (\sim 1.5 λ_{int})

- 11 x 11 cells in one layer with SiPM read-out
- first layer works as VETO
- next 7 layers: 3cm Cu + 2.5cm scintillator
- FPGA based fast TDC read-out with additional ToT amplitude measurement
- time resolution of one scint. cell ~ 120ps
- neutron detection efficiency: > 60% @ 1GeV

Thank you for attention!

Search for ${}_{\Lambda}H^3$, ${}_{\Lambda}H^4$, $\phi{\rightarrow}K+K$ - in Xe+CsI interactions

Analysis of 300M events

S.Merts, R.Barak

Room for improvements:

- Increase ToF-700 efficiency
- Improve dE/dx in GEMs for He³, He⁴ selection

Production of *p, d, t* in 3.2 AGeV argon-nucleus interactions

Two classes of centrality <40% and >40% based on barrel detector and track multiplicities

Tritons: dN/dy dependence on y

PHQMD model better describes data shape than DCM-SMM, but both models are lower in normalization by factor 6

Coalescence factors B₂ and B₃

$$E_A \frac{d^3 N_A}{d\boldsymbol{p}_A^3} = B_A \left(E_p \frac{d^3 N_p}{d\boldsymbol{p}_p^3} \right)^Z \left(E_n \frac{d^3 N_n}{d\boldsymbol{p}_n^3} \right)^{A-Z}$$

$$\approx B_A \left(E_p \frac{d^3 N_p}{d p_p^3} \right)^A$$

B_A is the coalescence parameter that characterizes the probability of nucleons to form nucleus A.

 $\rightarrow B_A = d^2N_A/2\pi p_T dp_T(A)dy$ $[d^2N_n/2\pi p_{\tau}dp_{\tau}(p)dy)]^A$, A=2(d), 3(t)

 $\approx B_A \left(E_p \frac{d^3 N_p}{d \mathbf{n}^3} \right)^A$, **B₂ for deuterons** Coalescence parameter B_A depends on the nucleus mass number A, collision system, centrality, energy, and B₃ for tritons transverse momentum

 $-0.18 < y^* < 0.62$ Centrality 0-40%

\rightarrow B₂ and B₃ rise with p_T(A)/A

In the coalescence model B_A rises with p_T

$$B_2 = \frac{3 \pi^{3/2} \left\langle \mathcal{C}_{d} \right\rangle}{2m_t \mathcal{R}_{\perp}^2(m_t) \mathcal{R}_{\parallel}(m_t)} e^{2(m_t - m) \left(\frac{1}{T_p^*} - \frac{1}{T_d^*}\right)}$$

M.Kapishin

BM@N experiment

BM@N physics case and observables

The QCD matter equation-of-state at high densities

PRL 86 (2001) 39

> particle production at (sub)threshold energies via multi-step processes

IQMD Ch. Hartnack, J. Aichelin, J. Phys. G 28 (2002) 1649

BM@N heavy ion program goals and observables BM@N

- 1. BM@N energy range is very promising (EOS, symmetry energy, hypernuclei)
- 2. Sensitive probes have to be measured multi-differential (p_T , y) and as function of beam energy (2 - 4 GeV/u)
- > EOS for high-density symmetric matter:
 - Collective flow of protons and light fragments in Au+Au collisions: Centrality, event plane, identification of fragments
 - Ξ^- (dss) and Ω^- (sss) hyperons: Yields, spectra, p_T vs. y from Au+Au and C+C collisions
- Symmetry energy at high baryon densities:
 - Particles with opposite isospin $I_3=\pm 1$: $\Sigma^{*+}(uus)/\Sigma^{*-}(dds)$
 - Proton vs neutron collective flow (need highly granulated neutron detector)
- \triangleright Λ -N and Λ -NN interactions
 - Hypernuclei: Yields, lifetimes, masses of ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, ${}^{5}_{\Lambda}H$, ${}^{4}_{\Lambda}He$, ${}^{5}_{\Lambda}He$, ...
- > Phase transition from hadronic to partonic matter:
 - Deconfinement: excitation function of Ξ (dss), Ω (sss) (EOS observables)
 - Transition to scaling of collective flow of mesons / hyperons with number of quarks (partonic matter)
 - Critical endpoint: higher order moments of the proton multiplicity distribution