

M.Kapishin

NICA Heavy Ion Complex

BM@N: heavy ion energy 1- 3.8 GeV/n, beams: d to Bi, Intensity ~few 10⁶ Hz (Bi)

Baryonic Matter at Nuclotron (BM@N) Collaboration:

5 Countries, 13 Institutions, 214 participants

- *University of Plovdiv, Bulgaria*
- *St.Petersburg University*
- *Shanghai Institute of Nuclear and Applied Physics, CFS, China;*
- *Joint Institute for Nuclear Research;*
- *Institute of Nuclear Research RAS, Moscow*
- *NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics, NRC KI, Moscow*
- • *Moscow Engineer and Physics Institute*
- • *Skobeltsyn Institute of Nuclear Physics, MSU, Russia*
- • *Moscow Institute of Physics and Technics*
- • *Lebedev Physics Institute of RAS, Moscow*
- • *Institute of Physics and Technology, Almaty*
- **Physical-Technical Institute Uzbekistan Academy of Sciences, Tashkent**
- **High School of Economics, National Research University, Moscow**

Heavy Ion Collision Experiments

HADES BES (SIS): Au+Au at $\sqrt{s_{NN}}$ = 2.42 GeV, Ag+Ag at $\sqrt{s_{NN}}$ = 2.42 GeV, 2.55 GeV.

STAR BES (RHIC): Au+Au at $\sqrt{s_{NN}}$ = 3-200 GeV

EOS of symmetric and asymmetric nuclear matter

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$
E_A(\rho,\delta) = E_A(\rho,0) + E_{sym}(\rho) \cdot \delta^2
$$

with $\delta = (\rho_n - \rho_p)/\rho$ $E/A(\rho_{o}) = -16$ MeV

Curvature defined by nuclear incompressibility: K = 9ρ² δ²(E/A)/δρ²

► Study symmetric matter EOS at $\rho = 3-5 \rho_0$ → elliptic flow of protons, mesons and **hyperons**

→ sub-threshold production of strange mesons and hyperons

→ extract K from data to model predictions

► Constrain symmetry energy E_{sym}

→ elliptic flow of neutrons vs protons

→ sub-threshold production of particles with opposite isospin

M.Kapishin

Study of EoS: Collective flow v. **of identified particles**

➢ collective flow of identified particles **BM@N MPD** $(n,K,p,\Lambda,\Xi,\Omega,...)$ driven by the pressure gradient in the early fireball

 \rightarrow Nuclear incompressibility: K = 9ρ² δ²(E/A)/δρ²

Azimuthal angle distribution: dN/d $\varphi \propto (1 + 2v_1 \cos\varphi + 2v_2 \cos2\varphi)$

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

M.Kapishin

Directed and elliptic flow at BM@N

BM@

- Good agreement between reconstructed and model data
- Approximately 250-300M events are required to perform multi-differential measurements of v_n

M.Kapishin

Rapidity dependence of v2 vs EOS

Rapidity dependence of v2 for protons and fragments is sensitive to EOS

FOPI data: Nucl. Phys. A 876 (2012) 1 IQMD: Nucl Phys. A 945 (2016)

Heavy-ions A+A: Hypernuclei production

BM@N

 \Box In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

□ Maximal yield predicted for \sqrt{s} =4-5A GeV (stat. model) (interplay of Λ and light nuclei excitation function)

► BM@N energy range is suited for search of hyper-nuclei

M.Kapishin BM@N experiment

Production of π ⁺, K ⁺, p , d , t in **3.2 AGeV argon-nucleus interactions**

M.Kapishin BM@N experiment

Production of *π⁺ and K⁺* **mesons in 3.2 AGeV argon-nucleus interactions**

BM@N

Production of *π⁺ and K⁺* **mesons in 3.2 AGeV argon-nucleus interactions**

BM@N

M.Kapishin BM@N experiment

Deuterons in 3.2 AGeV argon-nucleus interactions: dN/dy dependence on y

Centrality 0-40% $Ar + C \rightarrow d + X$. cent<40% BM@N preliminary DCMSMM x 4 PHQMD **x 4^{*}=0** Ar+Cu->d+X, cent<40% **BM@N** preliminary DCMSMM x 4 PHOMD x 4 Ar+Pb->d+X. cent<40% BM@N preliminary $5\frac{1}{2}$ DCMSMM x 4 PHQMD x 4 $\mathbf{3}$ ۷

 1.2

 1.4

\rightarrow V.Kolesnikov talk at Heavy Ion physics

- $y^* = y_{lab} y_{CM}$, $y_{CM} \approx \langle y(\pi) \rangle$ $Ar+C: = 1.27$ $Ar+Pb: = 0.82$
- **dN/dy spectrum softer in interactions with heavier target**
- **DCM-SMM and PHQMD models describe data shape, but are lower in normalization by factor 4**

M.Kapishin

 0.8

dN/dy

BM@N experiment

 2.2

 1.8

1.6

Deuterons: <m_t> dependence on y

Ar+Al->d+X, cent<40% $0.3 \Box$ **BM@N** preliminary **DCMSMM** 0.25 PHQMD 0.2 0.15 0.1 0.05 Ar+Sn->d+X, cent<40% BM@N preliminary 0.3 **DCMSMM** PHQMD 0.2 0.1 $\overline{2.2}$ \overline{V} $\overline{0.8}$ $\overline{1.2}$ $\overline{1.8}$ 1.4 1.6 2

- $y^* = y_{lab} y_{CM}$, $y_{CM} \approx \langle y(\pi) \rangle$ $Ar+C: = 1.27$ **Ar+Pb: <y(π)> = 0.82**
- **Maximum <mt> at mid-rapidity y***
- **PHQMD model is in better agreement with data at mid-rapidity than DCM-SMM**

M.Kapishin

Protons: <m_t> dependence on y

<m_T>-m, GeV **y*=0** Ar+C→p+X, cent<40% 0.3 BM@N preliminary **DCMSMM** 0.25 PHQMD $0.2₁$ 0.15 0.1 0.05 Ar+Cu→p+X, cent<40% 0.3 BM@N preliminary **DCMSMM** 0.25 PHQMD 0.2 0.15 0.1 $0.05\square$ Ar+Pb→p+X, cent<40% BM@N preliminary 0.3 **DCMSMM** PHQMD 0.2 0.1 \overline{y} 2.5 1.5 1 2

Centrality 0-40%

 $y^* = y_{lab} - y_{CM}$, $y_{CM} \approx \langle y(\pi) \rangle$ $Ar+C: = 1.27$ **Ar+Pb: <y(π)> = 0.82**

- **Maximum <mt> at mid-rapidity y***
- **DCM-SMM and PHQMD models describe <mt> dependence on y**

M.Kapishin

Coalescence factors B₂ and B₃

$$
E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^Z \left(E_n \frac{d^3 N_n}{dp_n^3} \right)^{A-Z}
$$

$$
\approx B_A \left(E_p \frac{d^3 N_p}{dp_n^3} \right)^A,
$$

 B_A is the coalescence parameter that characterizes the probability of nucleons to form nucleus A.

 $\rightarrow B_A = d^2N_A/2\pi p_{\tau}dp_{\tau}(A)dy$ / $[d^2N_p/2\pi p_T dp_T(p)dy]/4$, $A=2(d)$, 3(t)

> Coalescence parameter B_A depends on the nucleus mass number A, collision system, centrality, energy, and transverse momentum

B₃ for tritons

B2 for deuterons B³

M.Kapishin

M.Kapishin

Xe¹²⁴ + CsI interactions: main trigger cover centrality < 70-75% (85% events) min bias trigger (7% events), beam trigger (3% events)

→ Collected >500M events at 3.8 AGeV, 50M events at 3.0 AGeV

M.Kapishin

BM@N acceptance for Λ, K⁰ s , identified p, d

Λ and K⁰ ^s production in Xe+CsI interactions

BM@N

Life time is in agreement with PDG values: 0.2632 ns for Λ, 0.0895 ns for K⁰ s

Λ and K⁰ ^s production in Xe+CsI interactions

\rightarrow not BM@N result yet

Rapidity distribution of Λ and K⁰ s

compared with DCM-SMM model Transverse mass distribution of Λ and K⁰ s

Centrality from track multiplicity and forward detectors

 \rightarrow A.Demanov talk at Heavy Ion physics

Parametrization of data track multiplicity N_{ch} by MC Glauber model or Negative Binominal Distribution (Γ-fit) with free parameters \rightarrow Extract P(b | N_{ch})

 \rightarrow Γ-fit and MC-Glauber fit are in agreement

Trigger efficiency vs centrality

M.Kapishin

Collective flow of protons in Xe+CsI interactions

Azimuthal angle distribution: dN/d $\varphi \propto (1 + 2v_1 \cos\varphi + 2v_2 \cos2\varphi)$ BM@N Preliminary

 \rightarrow M.Mamaev talk at Heavy Ion physics

→ Direct flow of protons as a function of rapidity, transverse momentum; compared with the JAM model

→ **BM@@N result is in line with the energy dependence of the world data**

Study of neutron emission from target spectators in ¹²⁴Xe + CsI collisions at 3.8 A GeV

Xe+CsI data: π+-, K+-, p, He3, d/He4, t identification

Total β vs rigidity

 \rightarrow I.Zhavoronkova talk at detector session

Status of data analysis and plans for next physics runs

Topics of physics analyses:

- analysis of production of \wedge , \equiv hyperons, K^0 _S, $K\pm$, $\pi\pm$ mesons, light nuclear fragments in Xe+CsI interactions;
- analysis of collective flow of protons, π±, light nuclear fragments
- search for light hyper-nuclei $_{\Lambda}$ H³, $_{\Lambda}$ H⁴

Physics run in the Xe beam in 2025

- \rightarrow beam energy scan in the range of 2-3 AGeV
- \rightarrow same central tracker configuration based on silicon micro-strip and GEM detectors,
- \rightarrow additional 1st vertex plane of silicon micro-strip detectors

Preparations for a physics run with the Bi beam

- Further development of the central tracker is foreseen: installation of additional station of silicon micro-strip detectors
- It is planned to put into operation a 2-coordinate (X/Y) neutron detector of high granularity to measure neutron yield and collective flow

Forward Silicon Detectors

2-coordinate Si-plane based on STS modules

A new Si-plane based on STS modules to be installed between the Target and Forward Si-Tracker Motivation: to improve track and momentum resolution for the low-momentum particles

Plan to install and commission the new Si plane for the next experimental run

New neutron detector of high granularity

\rightarrow plan to install in 2026

\rightarrow talks at Facilities and advanced detector technologies

HGN detector parameters: 2 sub-detectors with 8 layers each $(-1.5 \lambda_{int})$

- 11 x 11 cells in one layer with SiPM read-out
- first layer works as VETO
- next 7 layers: 3cm Cu + 2.5cm scintillator
- FPGA based fast TDC read-out with additional ToT amplitude measurement
- time resolution of one scint. cell \sim 120ps
- neutron detection efficiency: > 60% @ 1GeV

M.Kapishin BM@N experiment

Thank you for attention!

M.Kapishin

Search for ΛH³ , ΛH⁴ , φ→K+K- in Xe+CsI interactions

Analysis of 300M events

S.Merts, R.Barak

Production of *p, d, t* **in 3.2 AGeV argon-nucleus interactions**

BM@N

Tritons: dN/dy dependence on y

Centrality 0-40%

• **PHQMD model better describes data shape than DCM-SMM, but both models are lower in normalization by factor 6**

Coalescence factors B² and B³

$$
E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^Z \left(E_n \frac{d^3 N_n}{dp_n^3} \right)^{A-Z}
$$

 $\rightarrow B_A = d^2N/2\pi p_r dp_r(A)dy$ / $[d^2N_p/2\pi p_{\tau}dp_{\tau}(p)dy]^{A}$, $A=2(d)$, 3(t)

B2 for deuterons

 B_A is the coalescence parameter that characterizes the probability of nucleons to form nucleus A.

the nucleus mass number A, collision **B3 for tritons** transverse momentum

 \rightarrow \mathbf{B}_{2} and \mathbf{B}_{3} rise with $\mathbf{p}_{\mathsf{T}}(\mathsf{A})$ /A

In the coalescence model B_{A} rises with p_T

$$
B_2 = \frac{3 \pi^{3/2} \langle C_d \rangle}{2m_t \mathcal{R}_{\perp}^2(m_t) \mathcal{R}_{\parallel}(m_t)} e^{2(m_t - m) \left(\frac{1}{T_{\rm p}^*} - \frac{1}{T_{\rm d}^*}\right)}
$$

M.Kapishin

BM@N physics case and observables

The QCD matter equation-of-state at high densities

➢ particle production at (sub)threshold energies via multi-step processes

Example: subthreshold K^+ production at GSI

BM@N heavy ion program goals and observables BM@N

- 1. BM@N energy range is very promising (EOS, symmetry energy, hypernuclei)
- 2. Sensitive probes have to be measured multi-differential (p_T, y) and as function of beam energy $(2 - 4 \text{ GeV/u})$
- \triangleright EOS for high-density symmetric matter:
	- Collective flow of protons and light fragments in Au+Au collisions: Centrality, event plane, identification of fragments
	- Ξ (dss) and Ω (sss) hyperons: Yields, spectra, p_T vs. y from Au+Au and C+C collisions
- \triangleright Symmetry energy at high baryon densities:
- Particles with opposite isospin $I_3 = \pm 1$: Σ^{*+} (uus)/ Σ^{*-} (dds)
	- Proton vs neutron collective flow (need highly granulated neutron detector)
- ➢ Λ-N and Λ-NN interactions
	- Hypernuclei: Yields, lifetimes, masses of $\frac{3}{4}$ H, $\frac{4}{4}$ H, $\frac{5}{4}$ H, $\frac{4}{4}$ He, $\frac{5}{4}$ He, ...
- ➢ Phase transition from hadronic to partonic matter:
	- Deconfinement: excitation function of Ξ (dss), Ω (sss) (EOS observables)
	- Transition to scaling of collective flow of mesons / hyperons with number of quarks (partonic matter)
	- Critical endpoint: higher order moments of the proton multiplicity distribution

M.Kapishin