Министерство науки и высшего образования Российской Федерации Федеральное государственное автомное образовательное учреждение высшего образрвания «Национальный исследовательский ядерный университет «МИФИ»

УДК 539.12.01

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Изучение потока антинейтрино по данным полей выгорания реактора ВВЭР-1000

Студент _____ В. А. Вакуленко Научный руководитель, к.ф.-м.н _____ Е. А. Литвинович

Москва2024

Содержание

1	Введение	2
	1.1 ИЗУЧЕНИЕ ПОТОКА АНТИНЕЙТРИНО ОТ РЕАКТОРА	2
	1.2 МОЩНОСТЬ РЕАКТОРА	2
2	КАРТОГРАММЫ	4
3	АНАЛИЗ ДАННЫХ	4
	3.1 РАСПРЕДЕЛЕНИЕ МОЩНОСТИ	4
	3.2 РАСПРЕДЕЛЕНИЕ ДОЛЕЙ ДЕЛЕНИЯ	5
4	РАСЧЕТ ПОТОКОВ АНТИНЕЙТРИНО	6
	4.1 ОПТИМИЗАЦИЯ ПОЛОЖЕНИЯ ДЕТЕКТОРА	7
5	Заключение	10

1 Введение

1.1 ИЗУЧЕНИЕ ПОТОКА АНТИНЕЙТРИНО ОТ РЕАКТОРА

Поток антинейтрино от реактора можно рассчитать по формуле:

$$\Phi(t, E_{\bar{\nu_e}}) = \frac{1}{4\pi} \cdot \int \frac{P_{th(t,\vec{r})}}{(\vec{L_0} - \vec{r})^2 E_f(t, \vec{r})} \cdot S_f(t, \vec{r}, E_{\bar{\nu_e}}) dV,$$

где интеграл берётся по всему объёму АЗ. В этой формуле $\vec{L_0}$ — расстояние между точкой, в которой рассчитывается поток, и центром АЗ, \vec{r} — радиус вектор от центра АЗ до элемента АЗ от которого вычисляется поток, $P_{th(t,\vec{r})}$ — тепловая мощность данного элемента АЗ, $E_f(t,\vec{r}) = \sum_i \alpha_i(t,\vec{r}) E_i$ — средняя тепловая энергия, выделяющаяся в данном элементе активной зоны на одно деление, $S_f(t,\vec{r}, E_{\nu_e}) = \sum_i \alpha_i(t,\vec{r}) S_i(E)$ — спектр антинейтрино, приходящийся на одно деление для данного элемента АЗ. $E_f(t,\vec{r})$ и $S_f(t,\vec{r})$ представляют собой средневзвешенное, соответственно, энергий E_i и спектров S_i для четырёх основных изотопов (^{235}U , ^{238}U , ^{239}Pu , ^{241}Pu), взвешенных с соответствующими им долями деления α_i . В данной формуле, выделяющаяся в активной зоне тепловая энергия делится на энергию, выделяющуюся в одном акте деления; таким образом, получается число делений, которое умножается на спектр антинейтрино от одного деления, давая поток антинейтрино от реактора.

1.2 МОЩНОСТЬ РЕАКТОРА

Мощность реактора является по сути главным, определяющим фактором потока антинейтрино от реактора, так как она напрямую входит в формулу для потока, и изменение мощности ведёт к практически прямо пропорциональному изменению потока антинейтрино, соответственно, погрешность мощности будет оказывать существенное влияние на погрешность потока антинейтрино.[1] Мощность реактора можно вычислить различными методами, каждый из которых имеет свою погрешность. Для примера можно привести следующие методы расчёта мощности реактора и их примерные погрешности [8]:

- 1. По теплотехническим параметрам первого контура (по расходу теплоносителя и подогреву на петлях) — 5,1% (наибольшую погрешность вносит погрешность расчета расхода теплоносителя в петлях 1-го контура);
- По расходу питательной воды на парогенераторах (ПГ) и теплосодержанию питательной воды на входе в ПГ и пара на выходе ПГ − 1,1% (наибольшую погрешность вносит погрешность измерения расхода питательной воды перед ПГ);

- По расходу питательной воды на подогревателях высокого давления (ПВД) и теплосодержанию питательной воды за ПВД и пара на выходе ПГ – 1,5(наибольшую погрешность вносит погрешность измерения расхода питательной воды перед ПВД);
- 4. По показаниям внутриреакторных датчиков прямой зарядки (ДПЗ) 4,5(наибольшую погрешность вносит погрешность расчета коэффициентов чувствительностей);[2]
- 5. По показаниям внереакторных ионизационных камер (ИК) 2,9% (наибольшую погрешность вносит погрешность нормировочных коэффициентов для связи сигналов ионизационных камер, расположенных в каналах вне реактора, с тепловой мощностью реактора).

Приведённые значения погрешностей являются оценочными, реальные же погрешности данных методов зависят как от состояния измерительных средств,[3] так и от режима работы реактора (уровня мощности и т.д.) и определяются исходя из балансных испытаний. На 3 энергоблоке Калининской АЭС используются три способа измерения мощности: по параметрам теплоносителя 1-го контура с погрешностью 2.9%, по параметрам питательной воды перед парогенераторами с погрешностью 2.5%, по показаниям внутриреакторных датчиков прямой зарядки с погрешностью 3.6%. К данным способам может также добавляться и показание внереакторных ионизационных камер, которое тарируется, при необходимости, по средневзвешенному значению тепловой мощности реактора.[4]

Цель исследования заключается в обработке массива данных по активной зоне блока №3 КАЭС для текущей кампании и анализе данных, полученных их картограмм активной зоны. Так же нас инттерисует вопрос о наиболее оптимальном расположении детектора относительно реактора с точки зрения регистрации наибольшего[5] изменения потока антинейтрино за время компании.

2 КАРТОГРАММЫ

Данные реактора содержат в себе картограммы, представленные выше. Они несут информацию о номере TBC, виде топлива, годе эксплуатации и так далее. Так же в данных представленно распределение характеристик (мощности, долей деления и т.д.) по высоте, что позволяет производить анализ в объеме.

3 АНАЛИЗ ДАННЫХ

3.1 РАСПРЕДЕЛЕНИЕ МОЩНОСТИ

По данным картограмм были получены распределения мощности в плоскости XY в начале и конце кампании соответственно. Из графиков видно, как к концу кампании некоторые участки заметно потемнели, что говорит о низком значении мощности. В особенности это касается центра.

Рис. 1: Распределение мощности в плоскости ХУ в начале кампании

Рис. 2: Распределение мощности в плоскости ХУ в конце кампании

3.2 РАСПРЕДЕЛЕНИЕ ДОЛЕЙ ДЕЛЕНИЯ

Из картограмм так же получено распределение долей деления изотопа U^{235} в плоскости XY в начале и в конце кампании. Рассматривается именно этот изотоп, так как он дает наибольший вклад в поток антинейтрино, о чем пойдет речь ниже. Аналогично распределению мощности заметны значительные потемнения на графике, соответствующем концу кампании. Это соответствует снижению количества делений в данных областях.

Graph title

Рис. 3: Распределение долей деления изотоп
а U^{235} в плоскости XY в начале кампании

Рис. 4: Распределение долей деления изотопа U^{235} в плоскости XY в конце кампании

4 РАСЧЕТ ПОТОКОВ АНТИНЕЙТРИНО

По формуле, описанной в 1 главе введения, были построены спектры антинейтрино в начале и в конце кампании. Из рисунков видно не только уменьшение общего числа антинейтрино, но и изменение формы. Так же необходисо отметить, что за время компании количество урана 235 значительно уменьшается, а 239 плутоний увеличивается. Уменьшение суммарного потока антинейтрино по всем изотопам составляет примерно 7.3%.

Рис. 5: Зависимость потока антинейтрино от энергии в начале кампании

Рис. 6: Зависимость потока антинейтрино от энергии в конце кампании

4.1 ОПТИМИЗАЦИЯ ПОЛОЖЕНИЯ ДЕТЕКТОРА

Рис. 7: Распределение скорости изменения антинейтрино со временем в координатной плоскости XZ

Для определения оптимального положения детектора относительно регистрации максимальной велечины изменения потока антинейтрино мы находим отношение разности потоков в начале и в конце кампании,деленную на велечину потока в начале для каждой точки рассматриваемой плоскости. Домножив полученную величину на 100 мы получим значение, выраженное в процентах:

$$\frac{N_f - N_i}{N_f} * 100\%$$

На графике так же отмечены положения детекторов в экспериментахт iDream и Danss. Согласно графику iDream соответствует 7%, а эксперименту Danss-8%. Штрихованная часть соответствует непосредственно самой акивной зоне. Наиболее выгодными положениями являются самые светлые пятна. Как видно, имеется два белых пятна у краев активной зоны. Однако, эти области находятся слишком близко к реактору, поэтому мы их не учитываем.

Для исследования поведения данной велечины в одной точке плоскости с течением времени были построены следующие графики.

Рис. 8: Зависимость потока антинейтрино в точке (0,0,5)м от времени

Рис. 9: Зависимость потока антинейтрино в точке (15,0,0)м от времени

Видно, что в точке над реактором зависимость нелинейная, наблюдается

Рис. 10: Зависимость потока антинейтрино в точке (0,0,-20)м от времени

повышение, из чего следует незначительное изменение потока антинейтрино, что не подходит для наших задач.

В противовес первой точке, сбоку и снизу от ректора происходит значительное изменение потока антинейтрино, что мы и видим на графиках.

5 Заключение

В ходе работы были получены следующие результаты:

Проведены обработка и анализ картограмм выгорания блока №3 КАЭС для текущей кампании, получены распределения мощности и долей деления изотопа U235 в плоскости XY.

Рассчитаны потоки антинейтрино из активной зоны реактора ВВЭР-1000 в рамках Курчатовской модели спектров.

Исследован вопрос о наиболее выгодном расположении детектора относительно реактора с точки зрения регистрации наибольшего изменения потока антинейтрино за время компании. Так, было выяснено, что наиболее оптимальным будет расположение снизу от реактора.

Список литературы

- [1] Alessandro Strumia и Francesco Vissani. «Precise quasielastic neutrino/nucleon cross-section».
 B: *Physics Letters B* 564.1-2 (июль 2003), с. 42—54. ISSN: 0370-2693. DOI: 10.1016/s0370-2693(03)00616-6. URL: http://dx.doi.org/10.1016/S0370-2693(03)00616-6.
- [2] A. Abramov и др. «iDREAM: industrial Detector of REactor Antineutrinos for Monitoring at Kalinin nuclear power plant». B: Journal of Instrumentation 17.09 (сент. 2022), P09001. ISSN: 1748-0221. DOI: 10.1088/1748-0221/17/09/p09001. URL: http://dx.doi.org/10.1088/ 1748-0221/17/09/P09001.
- [3] К. Akiba и др. «Characterisation of Medipix3 silicon detectors in a charged-particle beam». В: Journal of Instrumentation 11.01 (янв. 2016), P01011—P01011. ISSN: 1748-0221. DOI: 10.1088/ 1748-0221/11/01/p01011. URL: http://dx.doi.org/10.1088/1748-0221/11/01/P01011.
- [4] H. Almazán и др. «Accurate Measurement of the Electron Antineutrino Yield of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"display="inline»<mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mprescripts /><mml:none /><mml:mrow><fissions from the STEREO Experiment with 119 Days of Reactor-On Data». B: *Physical Review Letters* 125.20 (нояб. 2020). ISSN: 1079-7114. DOI: 10.1103/physrevlett.125.201801.
 URL: http://dx.doi.org/10.1103/PhysRevLett.125.201801.
- [5] Xubo Ma и др. «Investigation of antineutrino spectral anomaly with reactor simulation uncertainty».
 B: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 906 (окт. 2018), с. 97—102. ISSN: 0168-9002. DOI: 10.
 1016/j.nima.2018.08.002. URL: http://dx.doi.org/10.1016/j.nima.2018.08.002.