ПОИСК СВЕРХЛЁГКИХ ТЁМНЫХ ФОТОНОВ ДЕТЕКТОРОМ IDREAM НА КАЛИНИНСКОЙ АТОМНОЙ СТАНЦИИ

Выполнил: Студент группы M23-114 Киселев Кирилл Клаудиович Научный руководитель: к.ф.-м.н. Литвинович Евгений Александрович Научный консультант: м.н.с. Нугманов Радик Рафаэльевич

ЦЕЛЬ РАБОТЫ

• Цель работы: исследовать чувствительность детектора iDREAM к тёмным фотонам.

• Задачи:

- Рассмотреть модель тёмных фотонов и рассчитать ожидаемый энергетический спектр событий для детектора iDREAM, предсказываемый этой моделью;
- Разработать критерии отбора и произвести отбор событий-кандидатов в данных iDREAM;
- Оценить вклад фона в измеряемую скорость счёта;
- Получить ограничения на физические параметры модели тёмных фотонов: масса тёмного фотона m_X, константа связи с заряженным током Стандартной Модели g_X.

Dark Matter Search Results from a One Ton-Year Exposure of XENON1T // E. Aprile *et al.* (XENON Collaboration) Phys. Rev. Lett. **121**, 111302

Recent progress in the physics of axions and axion-like particles // Choi K., Im S. H., Shin C. S. Annual Review of Nuclear and Particle Science. - 2021. - T. 71. -C. 225-252.

Sterile neutrino dark matter // Boyarsky A. et al. Progress in Particle and Nuclear Physics. – 2019. – T. 104. – C. 1-45.

M [keV]

ТЁМНЫЙ (СКРЫТЫЙ) СЕКТОР

In search for unseen matter, physicists turn to dark sector // SCIENCE 24 Mar 2017 Vol 355, Issue 6331 Dark Sectors and New, Light, Weakly-Coupled Particles // Essig R. et al. arXiv preprint arXiv:1311.0029. – 2013.

ВОЗМОЖНЫЕ ЗАПИСИ ЛАНГРАНЖИАНА ТЁМНЫХ ФОТОНОВ

 $J = -\frac{1}{4}F_{AAV}^{2} - \frac{1}{7}F_{2AV}^{2} + \frac{1}{2}M_{3}^{2}A_{4}^{2} + \frac{1}{2}M_{3}^{2}A_{2}^{2} + j_{A}(e_{4}A_{4}A_{4}+e_{4}A_{2})$

Limits of electrodynamics: paraphotons. // Okun L. B. Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, 1982. – №. ITEP--48 (1982).

$$-4L_{\rm kin}(\Lambda) = \chi_1 (F_1^{\mu\nu})^2 + \chi_2 (F_2^{\mu\nu})^2 + 2\chi F_1^{\mu\nu} F_{2\mu\nu}$$

Two U (1)'s and ε charge shifts // Holdom B. Physics Letters B. – 1986. – Τ. 166. – Ν^o. 2. – C. 196-198.

$$\mathcal{L}_0 = -\frac{1}{4} F_{a\mu\nu} F_a^{\mu\nu} - \frac{1}{4} F_{b\mu\nu} F_b^{\mu\nu} - \frac{\varepsilon}{2} F_{a\mu\nu} F_b^{\mu\nu}$$
$$\mathcal{L} = e J_\mu A_b^\mu + e' J'_\mu A_a^\mu$$

$$\mathcal{L}_{\rm m} = \frac{M_a^2}{2} A_a^{\mu} A_{a\mu} + \epsilon_m A_{a\mu} A_b^{\mu} + \frac{M_b^2}{2} A_b^{\mu} A_{b\mu}$$

The physics of the dark photon: a primer.

// Fabbrichesi M., Gabrielli E., Lanfranchi G. Cham, Switzerland : Springer, 2021.

СПОСОБЫ ВЗАИМОДЕЙСТВИЯ ТЁМНОГО ФОТОНА С СМ

$$\mathcal{L} \supset -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} + \frac{1}{2}m_X^2 X^\mu X_\mu - g_X J_\mu X^\mu$$

Light dark bosons in the JUNO-TAO neutrino detector // Smirnov M. et al. Physical Review D. – 2021. – T. 104. – №. 11. – C. 116024.

Detecting dark photons with reactor neutrino experiments // Park H. K. Physical Review Letters. – 2017. – T. 119. – N^o. 8. – C. 081801.

$$\mathcal{L} = -\frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{1}{4}S_{\mu\nu}S^{\mu\nu} + \frac{m^2}{2}(S_\mu - \chi A_\mu)^2$$

[7] in **Constraints on hidden photons produced in nuclear reactors** // Danilov M., Demidov S., Gorbunov D. Physical Review Letters. – 2019. – T. 122. – Nº. 4. – C. 041801.

ОГРАНИЧЕНИЯ НА ТЁМНЫЙ ФОТОН (ОТ ВСЕХ ЭКСПЕРИМЕНТОВ) Большие массы: *m_X* ∈ [10⁻³; 10³] ГэВ

Малые массы: *m_X* ∈ [10⁻²⁰; 1] МэВ

ОГРАНИЧЕНИЯ НА ТЁМНЫЙ ФОТОН (ОТ ВСЕХ ЭКСПЕРИМЕНТОВ)

Большие массы: $m_X \in [10^{-3}; 10^3]$ ГэВ

(распады в невидимые конечные состояния)

The physics of the dark photon: a primer. // Fabbrichesi M., Gabrielli E., Lanfranchi G. Cham, Switzerland : Springer, 2021.

ЭКСПЕРИМЕНТЫ ПО ПОИСКУ ТЁМНОГО ФОТОНА

Малые массы, $m_X < 1$ МэВ

- Атомные эксперименты (модификация силы Кулона)
- Ограничения из экспериментов по поиску аксионов и АПЧ
- Ограничения из астрофизики (перенос энергии в звёздах)
- Ограничения из космологии

Малые массы, $m_X < 1$ МэВ (**тёмный фотон составляет 100% ТМ**)

- Эксперименты по прямому поиску ТМ
- Галоскопы

Большие массы, $m_X > 1$ МэВ

- Коллайдерные эксперименты (пучокпучок)
- Beam-dump эксперименты (пучокмишень)
- Потери энергии в сверхновых
- Измерение магнитного момента электрона

МЕХАНИЗМ РОЖДЕНИЯ ТЁМНЫХ ФОТОНОВ В АЗ

- АЗ (активная зона) реактора мощный источник γ-квантов
- Предполагается, что тёмный фотон Х может образоваться в АЗ в процессе рассеяния γ-квантов на электронах: γе → eX
- Нужен спектр ү-квантов в АЗ

ИСТОЧНИКИ *ү*-КВАНТОВ В АЗ РЕАКТОРА

Источники у-квантов:

- Мгновенное γ-излучение деления (prompt)
- γ-излучение коротко- и долгоживущих продуктов деления (delayed)
- Захватное γ-излучение от реакции (n, γ): большой вклад от захвата на ¹⁵⁵Gd, ¹⁵⁷Gd
 в начале кампании
- Излучение при неупругом рассеянии нейтронов
- *ү*-излучение продуктов реакций
- γ-излучение продуктов активации
- Аннигиляционное γ-излучение
- Тормозное *γ*-излучение

ИЗОТОПНЫЙ СОСТАВ АЗ (ПРЕДОСТАВЛЕН ПЕРСОНАЛОМ КАЭС)

n _i [^{шт} _{см³}] (начало кампании)	<i>σ_{і(n,γ)}</i> [барн]	$σ_{i(n,γ)}$ [cm ²]	Скорость реакции (<i>n</i> , γ) [c ⁻¹] (начало кампании)
2,132E+20	98,8	9,88E-23	5,832E+18
6,196E+21	2,68	2,68E-24	4,597E+18
2,453E+19	269,3	2,693E-22	1,829E+18
7,237E+18	289,5	2,895E-22	5,800E+17
2,516E+22	0,3326	3,326E-25	2,317E+18
2,582E+22	0,00019	1,9E-28	1,358E+15
5,815E+21	0,83	8,3E-25	1,336E+18
3,056E+16	735	7,35E-22	6,218E+15
3,331E+17	85	8,5E-23	7,839E+15
2,261E+18	60900	6,09E-20	3,813E+19
3,128E+18	1,8	1,8E-24	1,559E+15
2,391E+18	254000	2,54E-19	1,682E+20
3,796E+18	2,2	2,2E-24	2,312E+15
3,340E+18	1,4	1,4E-24	1,295E+15
	$n_i \left[\frac{IIIT}{CM^3} \right]$ (начало Кампании) 2,132E+20 6,196E+21 2,453E+19 7,237E+18 2,516E+22 2,582E+22 5,815E+21 3,056E+16 3,331E+17 2,261E+18 3,128E+18 3,128E+18 3,796E+18 3,796E+18	$n_i [\frac{mT}{CM^3}]$ (начало $\sigma_{i(n,\gamma)}[барн]$ кампании) $2,132E+20$ 98,8 $6,196E+21$ 2,68 $2,453E+19$ 269,3 $2,516E+22$ 0,3326 $2,582E+22$ 0,00019 $5,815E+21$ 0,83 $3,056E+16$ 735 $3,331E+17$ 85 $2,261E+18$ 60900 $3,128E+18$ 1,8 $2,391E+18$ 2,2 $3,340E+18$ 1,4	$n_i \begin{bmatrix} \PiT\\ CM^3 \end{bmatrix}$ (начало $\sigma_{i(n,\gamma)} [6арн]$ $\sigma_{i(n,\gamma)} [CM^2]$ кампании)98,89,88E-232,132E+2098,89,88E-236,196E+212,682,68E-242,453E+19269,32,693E-227,237E+18289,52,895E-222,516E+220,33263,326E-252,582E+220,000191,9E-285,815E+210,838,3E-253,056E+167357,35E-223,331E+17858,5E-232,261E+181,81,8E-242,391E+182,22,2E-243,340E+181,41,4E-24

Скорость реакции (число (*n*, γ)-реакций для **i-**изотопа в АЗ в единицу времени)

 $R_i = \sigma_{i(n,\gamma)} V \Phi n_i$

 $\Phi\left[\frac{\text{шт}}{\text{см}^2 \cdot \text{с}}\right] = 10^{13}$ - поток нейтронов в АЗ V [см³] = 2.77 \cdot 10⁷ - объём АЗ

Gd-155 и Gd-157 быстро «выгорают», что необходимо учитывать усреднением скорости счёта:

 $R_{Gd}(t) = R_{Gd}(0) \cdot e^{-\sigma_{i(n,\gamma)}\Phi t}$ по периоду наблюдения:

СПЕКТР *ү*-КВАНТОВ В АЗ РЕАКТОРА (РАССЧИТАН Д. ПОПОВЫМ)

$$\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}} = \frac{P_{th}}{\langle E_f \rangle} \sum_{i} \alpha_i S_p^i + \sum_{j} R_j S_{n\gamma}^j$$

Вклад погрешностей:

- Погрешности множественности γквантов (~7%)
- Ошибки долей деления α_i (~4%)
- Ошибки тепловой мощности *P_{th}* (~2%)
- Ошибки интенсивности линий (n, γ)-реакций (~2%)

Итог: 10% (консервативная оценка)

ДЕТЕКТОР IDREAM

- Экспериментальный образец промышленного сцинтилляционного детектора для мониторинга реакторных антинейтрино
- Разработан и реализован в НИЦ «Курчатовский Институт» совместно с НИИЯФ МГУ имени Д. В. Скобельцына
- Сбор данных начался в 2021 году

ВВЭР-1000 мощностью **3** ГВт, установленный на Калининской АЭС

19.6 m

Тёмный фотон может быть зарегистрирован по событию обратного рассеяния на электронах в мишени детектора.

Предполагается, что в однородном сцинтилляционном детекторе вторичный γквант и электрон отдачи регистрируются как одно событие.

СПЕКТРЫ ТЁМНЫХ ФОТОНОВ

Спектр тёмных фотонов, рождённых в АЗ

Ожидаемый спектр событий в **iDREAM** после учёта 1) ослабления потока тёмных фотонов в веществе между АЗ и детектором 2) энергетического разрешения **iDREAM**

Полные и дифференциальные сечения из **Light dark bosons in the JUNO-TAO neutrino detector** // Smirnov M. et al. Physical Review D. – 2021. – Т. 104. – №. 11. – С. 116024.

		R-OFF	R-ON
Период сбора данных		08.10.2022 - 27.12.2022	16.01.2023 - 20.04.2023
Астрономическое время		111 дней	94 дня
Живое время		37 дней	60 дней
Скорость счёта одиночных событий	[3; 10] МэВ	72.672 ± 0.005(стат.)	72.882 ± 0.004(стат.)
	[4; 10] МэВ	7.435 ± 0.002(стат.)	7.666 ± 0.001(стат.)
	[5; 10] МэВ	2.075 ± 0.001(стат.)	2.106 ± 0.001(стат.)

Отбор событий кандидатов:

- Мюонное вето 150 мкс (мюон сигнал в мюонных пластинах или "мюонная" форма импульса в мишени)
- Одиночные события (нет других событий до/после 100 мкс)
- Исследованы три энергетических бина: 3-10 МэВ, 4-10 МэВ, 5-10 МэВ.

Систематическая погрешность скорости счёта ΔR_f , связанная с флуктуацией, определялась как среднеквадратичное отклонение распределения скорости счёта.

Бин, МэВ	R_{OFF}, c^{-1}	R_{ON}, c^{-1}	R_{exp}, c^{-1}
[3; 10]	72.672 ± 0.005 (стат.)	72.882 ± 0.004 (стат.)	0.210 ± 0.006 (стат.)
	±0.819(сист.)	± 0.710 (сист.)	±1.084(сист.)
[4; 10]	7.435 ± 0.002 (стат.)	$7.666 \pm 0.001 (\text{стат.})$	0.232 ± 0.002 (стат.)
	± 0.107 (сист.)	±0.106(сист.)	± 0.151 (сист.)
[5; 10]	2.075 ± 0.001 (стат.)	2.106 ± 0.001 (стат.)	0.031 ± 0.001 (стат.)
	± 0.021 (сист.)	± 0.017 (сист.)	± 0.027 (сист.)

Поскольку скорость счёта фоновых одиночных событий не зависит от режима работы реактора, учёт фона можно произвести вычитанием скорости счёта детектора, измеренной при выключенном реакторе, из скорости счёта при включенном реакторе: $R_{exp} = R_{ON} - R_{OFF}$

статистическая модель

$R_{th} = R_{DP}(1 + \theta_{\gamma}\sigma_{\gamma}) + \Delta R_f \theta_f$

 R_{th} - ожидаемая скорость счёта, $R_{DP}(m_X, g_X)$ - ожидаемая скорость счёта событий от ТФ, получаемая интегрированием энергетического спектра, $\sigma_{\gamma} = 10\%$ - относительная ошибка спектра γ -квантов, ΔR_f - систематическая погрешность скорости счёта, θ_{γ} , θ_f - параметры неопределённости спектра γ -квантов в АЗ и флуктуации ΔR_f скорости счёта одиночных событий

ФУНКЦИЯ ПРАВДОПОДОБИЯ

Из максимизации L по всем параметрам ($m_X, g_X, \theta_\gamma, \theta_{bkg}$) и условно (по параметрам неопределённости ($\theta_\gamma, \theta_{bkg}$) при фиксированных параметрах m_X, g_X и выбранного уровня достоверности (95%) можно получить ограничения на параметры модели ТФ

ПРЕДЕЛЫ

ЗАКЛЮЧЕНИЕ

- Впервые использованы точные данные о составе активной зоны промышленного реактора и долях делений нуклидов, соответствующих выбранному для анализа периоду набора статистики.
- Использован спектр гамма-квантов для промышленного реактора ВВЭР-1000 с учётом долей деления радиоактивных изотопов и состава АЗ
- Для однородного сцинтилляционного детектора впервые учтены систематические ошибки скорости счёта детектора.
- Установлено ограничение на константу связи ТФ с заряженными токами СМ g_X.

СПАСИБО ЗА ВНИМАНИЕ!

