Выделение сигнала в инклюзивном процессе $pp \rightarrow ZZ \rightarrow \ell \ell \nu \nu$ в эксперименте АТЛАС на данных второго сеанса работы БАК.

Зубов Дмитрий

Национальный исследовательский ядерный университет «МИФИ»

Научный руководитель: Солдатов Е.Ю.

18.06.2024

Мотивация и цели

Мотивация:

- Отсутствие ZZZ или ZZγ вершин взаимодействия → косвенный поиск эффектов, предсказанных теориями за пределами CM.
- *pp* → ZZ важный фон для процесса рождения бозона Хиггса.

Цели анализа:

- ▶ Получить интегральное и дифференциальные сечения для переменных $p_T^{\ell \ell} = p_T^Z$, $\Delta \phi(\ell \ell)$, m_T^{ZZ} , N_{jets} , $m(j_1, j_2)$.
- Поставить пределы на аномальные тройные вершины взаимодействия.

Задача:

Измерение сечения рождения пар Z-бозонов.

Inclusive $ZZ \rightarrow II \nu \nu$

- В событии два разноименно-заряженных лептона одного аромата (e⁺e⁻или µ⁺µ⁻), при этом, поперечный импульс первого больше 30 ГэВ, второго больше 20 ГэВ;
- Вето на третий заряженный лептон;
- ▶ 76 ГэВ < M_{II} < 106 ГэВ;</p>
- $E_{\tau}^{miss} > 70 \ \Gamma \Rightarrow B.$
- Отбор объектов описан в бэкапе

Signal				
ZZ (~ 0.7%)	Рождение двух Z-бозонов и последующий распад в $I\!I u u$			
Background				
Zj (~ 85.6%)	рождение Z-бозона и струи, с распадом Z-бозона в пару заря-			
	женных лептонов и большим ложным потерянным попереч-			
	ным импульсом			
tt ($\sim 11.0\%$)	рождение пары топ-кварков и последующим распадом вклю-			
	чающим конечное сосяние $l\!l u u$ (не резонансное рождтоение			
	ΙΙνν)			
WZ (~ 1.0%)	рождение пары бозонов Z и W, с распадом Z-бозона в пару			
	заряженных лептонов и лептонным распадом W			
WW (~ 0.5%)	рождение пары W с распадом в $I\!I u u$ (не резонансное рожде-			
	ние <i>IIVV</i>)			
Wt (~ 0.9%)	рождение W и топ-кварка и распадом в конечное состояние,			
	содержащее $I\!I u u$ (не резонансное рождение $I\!I u u$)			
Other (4ℓ, ℓℓqq,	Фоновые процессы, которые вносят незначительный вклад в			
VVV , $Z(\tau\tau)$,	общее число событий и оцениваются с помощью МК			
W + jets)	(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三			

Оптимизация отбора событий. Строгий предотбор событий

 В процессе оптимизации искались пороги на переменные, при которых достигается максимум сигнальной значимости:

$$Z = \sqrt{2 \times \left[(S+B) \times \ln\left(1 + (S/B)\right) - S \right]}$$

 Сигнальная значимость рассматривалась как функция нескольких переменных и поиск оптимального вектора оптимизируемых отборов осуществлялся перебором всевозможных вариантов ограничения фазового пространства.

Переменная	До	После		
E ^{miss} . ГэВ	_	>110		
ΔR_{\parallel}	_	<1.8		
$\Delta \phi(\vec{E}_{T}^{miss}, \vec{p}_{T}^{ll})$	_	>2.2		
N _{b-iets}	_	<1		
E ^{miss}				
$-\frac{1}{H_T}$	—	>0.65		
<i>т</i> _{ℓℓ} , ГэВ	76-106	80-100		
Сигнал				
QCD ZZ	7600±30	1558 ± 15		
EWK ZZ	262±2	$7.47 {\pm} 0.08$		
		1000 10		
Всего сигнала	7860±30	1960±15		
Всего сигнала	7860±30 Фон	1960±15		
Всего сигнала Zj	7860±30 Фон 963000±4000	1966±15 150±16		
Всего сигнала Zj WZ	Фон 963000±4000 11340±30	1900±15 150±16 691±7		
Zj WZ tt, Wt, ttV, ttVV	7860±30 Фон 963000±4000 11340±30 123340±80	1900±15 150±16 691±7 89±3		
Zj WZ tt, Wt, ttV, ttVV WW	7860±30 Фон 963000±4000 11340±30 123340±80 5093±13	1900±15 150±16 691±7 89±3 32.1±1.0		
Всего сигнала Zj WZ tt, Wt, ttV, ttVV WW Other	7860±30 Фон 963000±4000 11340±30 123340±80 5093±13 282±2	1900±15 150±16 691±7 89±3 32.1±1.0 49±2		
Zj WZ tt, Wt, ttV, ttVV WW Other Всего фона	7860±30 Фон 963000±4000 11340±30 123340±80 5093±13 282±2 1123000±4000	1960 ± 15 150 ± 16 691 ± 7 89 ± 3 32.1 ± 1.0 49 ± 2 1011 ± 18		
Zj WZ tt, Wt, ttV, ttVV WW Other Всего фона	7860±30 Фон 963000±4000 11340±30 123340±80 5093±13 282±2 1123000±4000	1900 ± 15 150 ± 16 691 ± 7 89 ± 3 32.1 ± 1.0 49 ± 2 1011 ± 18		
Bcero сигнала Zj WZ tt, Wt, ttV, ttV, ttVV WW Other Bcero фона Сигнальная	7860±30 Фон 963000±4000 11340±30 123340±80 5093±13 282±2 1123000±4000 5.43±0.02	1900±15 150±16 691±7 89±3 32.1±1.0 49±2 1011±18 50.0±0.4		

< ロ > < 同 > < 回 > < 回 > < □ > <

Определение контрольных и сигнальной областей.

Переменная	SR	WZ	NR	Zj
		(3ℓ)	(eµ)	
<i>Е_Т^{miss.}</i> , ГэВ	>110	>70	>70	
ΔR_{II}	<1.8	<2	<2	<1.8
$\Delta \phi(ec{E}_T^{miss},ec{p}_T^{ll}),$ рад	>2.2			
$\frac{E_T^{miss}}{H_T}$	>0.65	>0.3	>0.3	
m_{\pm}^W , ГэВ		>30		

- NR-регион делился на два подрегиона условиями N_{b-jets} = 0 и N_{b-jets} > 0
- Zj-регион делился на три подрегиона N_{jets} = 0, N_{jets} = 1 и N_{jets} > 1

イロト 不得 トイヨト イヨト 三日

Зубов Д.

Описание статистической модели

Интегральное сечение и фон оцениваются в фите, путем максимизации функции правдоподобия:

$$\mathcal{L}(\mu, \theta) = \prod_{r}^{\text{regions}} \left[\prod_{i}^{\text{bins} \in r} \text{Pois}(N_{i}^{\text{data}} | \mu \nu_{i}^{s} \eta^{s}(\theta) + \nu_{i}^{b} \eta^{b}(\theta)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_{i}),$$

N (ν) — наблюдаемое (прогнозируемое) количество событий

 $\mu~-$ коэффициент нормировки сигнала (сила сигнала), $\mu=
u^s/N^s.$

 θ — коэффициенты нормировки фона и систематические неопределенности.

 η — отражает влияние систематических неопределенностей на число событий в бине.

В фите 7 областей (включая сигнальную) и 7 коэффициентов нормировки (включая силу сигнала).

Сейчас фит к наблюдаемым данным выполняется только в контрольных областях и набор данных Азимова используется вместо наблюдаемых данных в сигнальной области.

Следующая статистика используется для вычисления ожидаемой значимости и неопределенности $\hat{\mu}$:

$$q(\mu, \hat{\mu}, \hat{\theta}) = -2 \ln \lambda(\mu, \hat{\mu}, \hat{\theta}) = -2 \ln \frac{\mathcal{L}(\mu, \hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})}, \ Z_{\mathsf{disc}}^{\mathsf{exp.}} = \sqrt{q(\mu = 1)_{\underline{A}}}, \quad (\underline{1}) \quad \text{for } \mu = 1$$

Источники систематических погрешностей

Экспериментальные:

- Неопределенности энергетической шкалы и разрешения адронных струй
- Неопределеность восстановления вершин адронных струй
- Неопределенности идентификации, восстановления и изоляции электронов и мюонов
- Неопределенность эффективности триггеров
- Неопределенность восстановления импульсов электронов и мюонов
- Неопределенность перевзвешивания пайл-апа
- Неопределенность определения светимости

Теоретические:

- Неопределенность масштаба КХД
- Неопределенность функции распределения партонов
- Неопределенность моделирования партонного ливня

Распределения до фита

Зубов Д.

Распределения после фита

Зубов Д.

Фит. Результаты.

Полученное значение силы сигнала μ_{ZZ} применяется при вычисления наблюдаемого сечения: $\sigma_{meas.} = \mu_{ZZ} \cdot \sigma_{SM}$

		Impact Table	
μ _{ZZ}	$1.00^{+0.04}_{-0.04}(stat)^{+0.05}_{-0.05}(syst)$	EG	0.31 %
$\mu_{Zi}, N_{iets} = 2$	0.97 ^{+0.30} _{-0.23} (full)	EL	0.26 %
	1 17 ^{+0.37} (f.III)	FT	0.30 %
$\mu_{Zj}, \mu_{jets} = 1$	1.17 _{-0.28} (1011)	MC Statistics	1.87 %
$\mu_{Z\!j}, \textit{N}_{\textbf{jets}}=0$	$1.28^{+0.39}_{-0.28}$ (full)	JET	2.34 %
$\mu_{NR}, N_{b-jets} > 0$	$1.00^{+0.13}_{-0.11}$ (full)	MET	0.38 %
$\mu_{NP}, N_{I} \cdot . = 0$	$1.40^{+0.18}$ (full)	MUON	0.37 %
D-Jets	-0.17(-2.17)	PRW	1.61 %
μ_{WZ}	$0.99^{+0.00}_{-0.05}$ (full)	Theory	3.68 %
		Showering	0.96 %
		Luminosity	0.79 %
		FullSyst	5.13 %

Квалификационная задача

Цель:

Изучить и задокументировать работу алгоритма индентификации частиц ТРТ для данных раннего второго сеанса набора данных, используя алгоритм идентификации частиц на основе функции правдоподобия.

Мотивация:

 Газовая геометрия TRT менялась с годами: количество заполненных ксеноном соломинок уменьшалось, а аргоном
 увеличивалось. Работа эволюционировавших алгоритмов идентификации частиц не проверялась на "лучшей" геометрии газа.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへつ

Заключение

- Построена статистическая модель учитывающая основные источники систематических ошибок.
- Получены ожидаемые статистические и системматические погрешности на силу сигнала, которые в последующем используются для оценки интегрального сечения.
- Изучен алгоритм идентификации частиц в детекторе TRT, на данных 3 сеанса.