Институт ядерной физики и технологий Кафедра №40 «Физика элементарных частиц»

Выпускная квалификационная работа студента на тему:

Четырехчастичные события в ультрапериферических столкновениях релятивистских ядер свинца при энергии 5,02 ТэВ/нуклон в эксперименте ATLAS на БАК

Научный руководитель: Тимошенко С.Л. Студент: Дадашова А.Э. <u>Цель работы</u>: полное моделирование фотон-фотонного образования пары ρ^0 мезонов и поиск соответствующего сигнала в данных 2023 года в ультрапериферических столкновениях релятивистских ионов свинца на БАК в эксперименте ATLAS.

<u>Мотивация</u>: одиночное образование ρ^0 мезона хорошо изучено коллаборациями STAR и ALICE, однако образование пары ρ^0 мезонов в двухфотонном взаимодействии исследовались только на e^+e^- коллайдерах. Текущие возможности БАК позволяют выделить и рассмотреть изучаемый процесс в большем диапазоне энергий и с большей статистикой, что в дальнейшем предоставит возможность для исследования интерференционных эффектов в образовании ρ^0 мезона и оценить вклад в фон для реакции образования возбужденного состояния ρ^0 мезона с последующим его распадом на четыре заряженных пиона.

Классификация столкновений тяжелых ионов по прицельному параметру b

Ультрапериферические столкновения (УПС) — столкновения с прицельным параметром налетающих ядер большим, чем сумма их радиусов (b > 2R). В виду малой плотности ядерной материи в области взаимодействия в таком типе столкновений сильное взаимодействие выражено в меньшей степени, чем преобладающие когерентное фотон-фотонное ($\gamma\gamma$), фотон-померонное (γP) и померон-померонное (PP) взаимодействия.

Реакции при ультрапериферических столкновениях характеризуются малой множественностью и малыми значениями поперечных импульсов рождаемых систем, что является одним из критериев отбора данного вида событий.

Meson	Au+Au, RHIC σ(mb)	Pb+Pb, LHC σ(mb)	Meson	Pb+Pb, LHC σ(mb)	
			ρ⁰ρ⁰	8,8	
ρ	590	5200	ωω	0,073	
ω	59	490	φφ	0,076	
φ	39	460	ρ ^o ω	1,6	
J/ψ	0.29	32	$\rho^{0}\phi$	1,6	
Y		150 µb	ρºJ/ψ	0,2	

Сечения образования векторных мезонов в ультрапериферических столкновениях

Диаграмма образования пары ρ^0 мезонов в двухфотонном взаимодействии

Диаграмма образования пары ρ^0 мезонов в механизме двойного рассеяния

Одним из экспериментов, изучающих столкновения тяжелых ионов, является эксперимент ATLAS

Схема ускорительного комплекса CERN

Общий вид детектора ATLAS

Полное моделирование

Процесс полного моделирования можно условно разделить на три этапа: 1) Генерация событий.

В данной работе для моделирования исследуемого процесса был использован MC генератор <u>STARLIGHT</u>, встроенный в Athena.

2) Симуляция.

Ha данном происходит моделирование взаимодействий этапе сгенерированных частиц со средой детектора ATLAS и последующая имитация их регистрации.

3) Реконструкция.

На этапе реконструкции набор данных проходит те же алгоритмы, что используются для реконструкции экспериментальных данных с детектора ATLAS.

Критерии отбора событий:

- $\sum Q = 0$,
- $N^{track} = \overline{4}$
- $|\eta^{track}| < 2.4,$ $|d_0^{track}| < 1.5$ MM

Two-Photon Channels	5
Particle	Jetset ID
e ⁺ e ⁻ pair	11
µ+µ⁻ pair	13
τ ⁺ τ ⁻ pair	15
$\tau^+\tau^-$ pair, polarized decay	10015*
ρ ⁰ pair	33
a ₂ (1320) decayed by PYTHIA	115
η decayed by PYTHIA	221
f ₂ (1270) decayed by PYTHIA	225
η' decayed by PYTHIA	331
${\sf f}_2(1525)\to {\sf K}^+{\sf K}^-(50\%), {\sf K}^0\bar{\sf K}^0(50\%)$	335
η_c decayed by PYTHIA	441
f ₀ (980) decayed by PYTHIA	9010221

Реализуемые на STARLIGHT каналы двухфотонных взаимодействий

Распределение по поперечному импульсу системы четырех заряженных пионов

Распределение по поперечному импульсу заряженного пиона

Распределения по инвариантной массе системы четырех заряженных пионов

Реконструкция

STARLIGHT

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $\left|\eta^{track}\right| < 2.4$, $p_T^{4trk} < 0.12$ ГэВ

Анализ данных

- 2023 (*Pb* + *Pb*) 64 датасета 2.6 · 10⁹ событий
- Триггер: HLT_mb_sptrk_L11ZDC_A_1ZDC_C_VTE200 4.04 · 10⁶ событий
- $(N^{track} = 4) + (\sum Q = 0) + (n^{pixel} \ge 1, n^{SCT} \ge 2) 2.3 \cdot 10^6$ событий

Распределение по блокам светимости в зависимости от номера датасета для четырехтрековых событий, прошедших _________отбор по триггеру

Распределение по поперечному импульсу системы четырех заряженных пионов

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$

Двумерные распределения по d_0 для треков

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$

 $+p_T^{4trk}$ < 0.12 ГэВ

Распределения по поперечному импульсу трека

Распределения по инвариантной массе системы четырех заряженных пионов

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$, $\left|\eta^{track}\right| < 2.4$, $\left|d_0^{track}\right| < 1.5$ мм

 $+p_T^{4trk}$ < 0.12 ГэВ

Распределения по инвариантной массе системы четырех заряженных пионов

Распределения по поперечному импульсу системы двух заряженных пионов

Распределения по инвариантной массе системы двух заряженных пионов

Двумерные распределения по инвариантной массе для системы двух заряженных пионов

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$, $|\eta^{track}| < 2.4$, $|d_0^{track}| < 1.5$ мм

 $+p_T^{4trk}$ < 0.12 ГэВ, p_T^{trk} > 0.2 ГэВ, p_T^{2trk} < 0.12 ГэВ

Функция Сединга (3.1)

$$dN/dM_{\pi\pi} = \left| A_1 \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma_{\rho}}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma_{\rho}} + B \right|^2 + f_1$$

Функция Росса-Стодольского (3.3)

$$dN/dM_{\pi\pi} = \left| A_2 \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma_{\rho}}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma_{\rho}} \right|^2 \left(\frac{M_{\rho}}{M_{\pi\pi}}\right)^n + f_p$$

Ширина ho^{0} мезона, зависящая от импульса

$$\Gamma_{\rho} = \Gamma_0 \cdot (M_{\rho}/M_{\pi\pi}) \cdot \left[(M_{\pi\pi}^2 - 4m_{\pi}^2)/(M_{\rho}^2 - 4m_{\pi}^2) \right]^{3/2}$$

 A_1, A_2 — амплитуды функции Брейт-Вигнера, B — амплитуда прямого не резонансного производства $\pi^+\pi^-$, $M_{\pi\pi}$ — инвариантная масса двух заряженных пионов, M_{ρ} — масса ρ^0 мезона, Γ_{ρ} — ширина ρ^0 мезона, m_{π} — масса заряженного пиона, n — параметр отклонения от функции Брейт-Вигнера

Распределение по инвариантной массе системы двух заряженных пионов для <u>четырехтрековых</u> событий

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$, $|\eta^{track}| < 2.4$, $|d_0^{track}| < 1.5$ мм, $p_T^{4trk} < 0.12$ ГэВ, $p_T^{trk} > 0.2$ ГэВ, $p_T^{2trk} < 0.12$ ГэВ

Распределение по инвариантной массе системы двух заряженных пионов для <u>двухтрековых</u> событий

Результат фитирования функциями 3.1 и 3.3 распределения по инвариантной массе двух заряженных пионов для <u>четырехтрековых</u> событий

Результат фитирования функциями 3.1 и 3.3 распределения по инвариантной массе двух заряженных пионов для **двухтрековых** событий

Параметры фитирования распределения по инвариантной массе системы двух заряженных пионов для <u>четырехтрековых</u> событий

Параметры фитирования распределения по инвариантной массе системы двух заряженных пионов для <u>двухтрековых</u> событий

Параметры фита	Функция 3.1	Функция 3.3	PDG	Параметры фита	Функция 3.1	Функция 3.3	PDG
A_1	-29.1 ± 0.3	-	-	A_1	-244.3 ± 0.2	-	-
A_2	-	-29.7 ± 0.3	-	A_2	-	-250.7 ± 0.2	-
В	14.2 ± 0.5	-	-	В	134.3 ± 0.4	-	-
$ A_1/B $	2.05 ± 0.15	-	-	$ A_1/B $	1.819 ± 0.010	-	-
n	-	3.67 ± 0.13	-	n	-	3.67 ± 0.13	-
$M_{ ho}$, МэВ	771.63 ± 1.06	771.61 ± 1.03	775.26 ± 0.23	M_{ρ} , МэВ	773.15 ± 0.10	773.13 ± 0.10	775.26 ± 0.23
Γ_0 , МэВ	151 ± 3	151 ± 3	149.1 ± 0.8	Γ_0 , МэВ	151.5 ± 0.3	151.4 ± 0.3	149.1 ± 0.8

Ширина и масса ρ^0 мезона, полученные путем фитирования функцией 3.1 распределения по инвариантной массе двух заряженных пионов по данным УПС тяжелых ядер с энергией $\sqrt{s_{NN}} = 5.02$ ТэВ в эксперименте ALICE и с энергией $\sqrt{s_{NN}} = 200$ ГэВ в эксперименте STAR

	ALICE	STAR
M_{ρ} , МэВ	769.5 ± 1.2 (стат.) ± 2.0 (сис.)	775 ± 3
<u>Г</u> ₀ , МэВ	156 ± 2 (стат.) ± 3 (сис.)	162 ± 7

4 трека: N_{ρ^0} (функция 3.1) – $(28.4 \pm 0.5) \cdot 10^3$, N_{ρ^0} (функция 3.3) – $(27.3 \pm 0.5) \cdot 10^3$ 2 трека: N_{ρ^0} (функция 3.1) – $(3848 \pm 8) \cdot 10^3$, N_{ρ^0} (функция 3.3) – $(4054 \pm 8) \cdot 10^3$ $\frac{N_{\rho^{0}\rho^{0}}/N_{\rho^{0}} = (28.4 \pm 0.5)/(3848 \pm 8)}{(\sigma_{\rho^{0}\rho^{0}}/\sigma_{\rho^{0}} = 8.8/5200)}$

Заключение

- Проведено ознакомление с ультрапериферическими столкновениями тяжелых ядер и изучены публикации, связанные с двухфотонным образованием пары ho^0 мезонов.
- Получены навыки работы с Монте-Карло генератором STARLIGHT и методами анализа в программной среде ATLAS.
- Проведено полное моделирование исследуемого процесса, выделены критерии отбора событий для наложения их на экспериментальные данные, построены характерные кинематические распределения.
- Определены значения ширины и массы ho^0 мезонов для четырехтрековых событий:

 $M_{\rho} = 771.63 \pm 1.06$ M∋B, $\Gamma_0 = 151 \pm 3$ M∋B.

• Получена оценка отношения числа ho^0 мезонов в четырехтрековых событиях к числу ho^0 мезонов в двухтрековых событиях:

$$N_{\rho^0 \rho^0} / N_{\rho^0} = (28.4 \pm 0.5) / (3848 \pm 8).$$

BACK-UP

Зависимость дифференциального сечения $AuAu \rightarrow AuAu\rho^0 \rho^0$ от быстроты одного ρ^0 мезона, красная линия — для механизма двойного рассеяния, синие линии — для двухфотонного слияния, правая панель — для энергий RHIC, левая панель — для энергий LHC

Распределение по поперечному импульсу системы четырех заряженных пионов для данных ALICE по ультрапериферическим столкновениям Pb - Pb с энергией центра масс $\sqrt{s_{NN}} = 5.02$ ТэВ

Распределения по поперечному импульсу системы четырех заряженных пионов

Реконструкция

STARLIGHT

Ограничения: $\sum Q = 0$, $N^{track} = 4$.

Реконструкция

STARLIGHT

Ограничения: $\sum Q = 0$, $N^{track} = 4$

Распределение по псевдобыстроте трека

Распределение по d_0 трека

Ограничения: $\sum Q = 0$, $N^{track} = 4$

В выходном файле STARLIGHT позиции треков строго фиксированы по принадлежности к одному и тому же ρ⁰ мезону, после реконструкции выходной файл сгенерированных событий имеет тот же формат, что и у экспериментальных данных, то есть отсутствует информация о родительских частицах, но к ней можно обратиться, используя класс ElementLink. Для попытки разделения в экспериментальных данных пионов по их принадлежности к ρ⁰ мезонам были построены различные параметры двухпионных систем после реконструкции с знанием того, какая пара пионов каким мезоном была рождена.

Распределение по полярному углу между заряженными пионами с ограничениями: $\sum Q = 0$, $N^{track} = 4$, $|\eta^{track}| < 2.4$, $|d_0^{track}| < 1.5$ мм, $p_T^{4trk} < 0.12$ ГэВ, красный – от одного ρ^0 мезона, синий – от разных ρ^0 мезонов

Распределения по инвариантной массе системы двух заряженных пионов

ограничения $\Delta arphi < 3.0$

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $\left|\eta^{track}\right| < 2.4$, $\left|d_0^{track}\right| < 1.5$ мм, $p_T^{4trk} < 0.12$ ГэВ

Распределения по инвариантной массе системы двух заряженных пионов

красный — от одного ho^0 мезона, синий — добавление ограничения $\Delta \phi < 3.0$

Ограничения:
$$\sum Q = 0$$
, $N^{track} = 4$, $\left|\eta^{track}\right| < 2.4$, $\left|d_0^{track}\right| < 1.5$ мм, $p_T^{4trk} < 0.12$ ГэВ

При анализе экспериментальных данных выяснилось, что ограничение на поперечный импульс системы двух заряженных пионов оказалось более эффективным, чем ограничение на полярный угол

Распределения по быстроте системы четырех заряженных пионов

STARLIGHT

Эффективность реконструкции быстроты системы четырех заряженных пионов

Реконструкция

Распределение по псевдобыстроте трека

Распределение по d_0 трека

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$, $+p_T^{2trk} < 0.12$ ГэВ $|\eta^{track}| < 2.4$, $|d_0^{track}| < 1.5$ мм, $p_T^{trk} > 0.2$ ГэВ

Распределения по быстроте системы четырех заряженных пионов

Распределения по инвариантной массе системы четырех заряженных пионов

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$, $|\eta^{track}| < 2.4$, $|d_0^{track}| < 1.5$ мм, $p_T^{4trk} < 0.12$ ГэВ, $p_T^{trk} > 0.2$ ГэВ

 $+p_T^{2trk}$ < 0.12 ГэВ

Двумерные распределения инвариантной массы от поперечного импульса для системы двух заряженных пионов

Ограничения: $\sum Q = 0$, $N^{track} = 4$, $n^{pixel} \ge 1$, $n^{SCT} \ge 2$, $|\eta^{track}| < 2.4$, $|d_0^{track}| < 1.5$ мм

 $+p_T^{4trk} < 0.12$ ГэВ