МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 531.3, 539.1.05

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К БАКАЛАВРСКОЙ ДИПЛОМНОЙ РАБОТЕ ОЦЕНКА ФОНОВ В ИССЛЕДОВАНИИ АССОЦИИРОВАННОГО РОЖДЕНИЯ *Z*-БОЗОНА С ФОТОНОМ НА ПОЛНОМ НАБОРЕ ДАННЫХ RUN2 ПРОТОН-ПРОТОННЫХ СТОЛКНОВЕНИЙ С ЭНЕРГИЕЙ 13 ТЭВ В ЭКСПЕРИМЕНТЕ ATLAS

Студент	В. С. Жарова
Научный руководитель,	

к.ф.-м.н. Е. Ю. Солдатов

Научный консультант _____ К. К. Казакова

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

ОЦЕНКА ФОНОВ В ИССЛЕДОВАНИИ АССОЦИИРОВАННОГО РОЖДЕНИЯ *Z*-БОЗОНА С ФОТОНОМ НА ПОЛНОМ НАБОРЕ ДАННЫХ RUN2 ПРОТОН-ПРОТОННЫХ СТОЛКНОВЕНИЙ С ЭНЕРГИЕЙ 13 ТЭВ В ЭКСПЕРИМЕНТЕ ATLAS

Студент	В. С. Жарова
Научный руководитель,	
к.фм.н.	Е. Ю. Солдатов
Научный консультант	К. К. Казакова
Рецензент,	
к.фм.н.	Е. Н. Рамакоти
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов

СОДЕРЖАНИЕ

C	писо	к сокр	ращений и специальных терминов	4
Bı	веде	ние		5
1	Teo	ретич	еское введение	8
	1.1	Станд	цартная модель	8
	1.2	Калиб	бровочная теория	9
	1.3	Элект	грослабый сектор	11
	1.4	Ассоц	циированное рождение Z-бозона с фотоном в CM	13
	1.5	Метод	д максимального правдоподобия	15
2	Экс	сперим	иентальная установка	17
	2.1	Болы	иой адронный коллайдер	17
	2.2	Экспе	еримент ATLAS	19
		2.2.1	Система координат детектора ATLAS	19
		2.2.2	Внутренний детектор	21
		2.2.3	Система калориметров	22
		2.2.4	Мюонный спектрометр	23
		2.2.5	Триггерная система	24
3	Фо	новые	процессы и отбор событий	25
	3.1	Отбор	офотонов	25
	3.2	Фонон	вые процессы	26
		3.2.1	Отбор событий	27
4	Me	годы с	оценки фона, обусловленного неверной идентифи	-
	кац	ией ад	цронной струи как фотона	29
	4.1	Метод	цинтервалов	30
		4.1.1	Оптимизация областей в методе интервалов	32
		4.1.2	Процесс нормировки	33
		4.1.3	Линейная экстраполяция	34
		4.1.4	Источники систематической погрешности	39
	4.2	Матр	ичный метод	39

		4.2.1	Вычисление эффективностей	41
		4.2.2	Оценка jet $ ightarrow \gamma$ фона с помощью матричного метода .	44
		4.2.3	Источники систематической погрешности	46
5	Me	тоды с	оценки фона, обусловленного множественными рр	
	вза	имоде	йствиями	48
	5.1	Метод	цы на данных	49
		5.1.1	Оценка пайлап фона методом на данных с использо-	
			ванием нормировочных коэффициентов	49
		5.1.2	Оценка пайлап фона альтернативным методом на дан-	
			НЫХ	52
	5.2	Метод	д Монте-Карло наложений	55
		5.2.1	Процедура комбинации событий	56
		5.2.2	Коррекционный фактор	60
		5.2.3	Источники систематической погрешностей	63
3	аклю	очение		65
С	писо	к испо	ользованных источников	67
C A	писо Рас соб	к испо спреде ытий (ользованных источников ления по различным переменным до нормировки jet $ ightarrow \gamma$ в методе интервалов	67 72
С А Б	писо Рас соб Экс ныт	к испо спреде ытий (страпо ми фу:	ользованных источников ления по различным переменным до нормировки jet $ ightarrow \gamma$ в методе интервалов оляция в СО количества jet $ ightarrow \gamma$ событий различ- нкциями в матричном методе	67 72 73
С А Б В	писо Рас соб Экс ныт Экс лич	ж испо спреде ытий (страпо ми фу) страпо ного у	ользованных источников ления по различным переменным до нормировки jet $\rightarrow \gamma$ в методе интервалов оляция в СО количества jet $\rightarrow \gamma$ событий различ- нкциями в матричном методе оляция в СО количества jet $\rightarrow \gamma$ событий для раз- нисла интервалов в КО в матричном методе	67 72 73 74
С А Б В	писо Рас соб Экс ныт Экс лич Рас	ж испо спреде ытий (страпо ми фу: страпо ного ч спреде	ользованных источников ления по различным переменным до нормировки jet $\rightarrow \gamma$ в методе интервалов оляция в СО количества jet $\rightarrow \gamma$ событий различ- нкциями в матричном методе оляция в СО количества jet $\rightarrow \gamma$ событий для раз- нисла интервалов в КО в матричном методе ления по переменной Δz для событий с отбором	67 72 73 74
С А Б В	писо Рас соб Экс ныт Экс лич Рас по	ж испо спреде ытий (страпо ми фу: страпо ного ч спреде числу	ользованных источников ления по различным переменным до нормировки jet $\rightarrow \gamma$ в методе интервалов ляция в СО количества jet $\rightarrow \gamma$ событий различ- нкциями в матричном методе ляция в СО количества jet $\rightarrow \gamma$ событий для раз- нисла интервалов в КО в матричном методе ления по переменной Δz для событий с отбором струй	67 72 73 74 75
С А Б В Г	писо Рас соб Экс ныт Экс лич Рас по	ж испо спреде ытий (страпо ми фу: страпо ного ч спреде числу презен	ользованных источников ления по различным переменным до нормировки jet $\rightarrow \gamma$ в методе интервалов ляция в СО количества jet $\rightarrow \gamma$ событий различ- нкциями в матричном методе ляция в СО количества jet $\rightarrow \gamma$ событий для раз- нисла интервалов в КО в матричном методе ления по переменной Δz для событий с отбором струй тативность γ + jets выборки	 67 72 73 74 75 76
С А Б В Г Д	писо Рас соб Экс ныт Экс лич Рас по Ч Рап Д.1	ж испо спреде ытий (страпо ми фу: страпо иного ч спреде числу резен Распр	ользованных источников ления по различным переменным до нормировки jet $\rightarrow \gamma$ в методе интервалов ляция в СО количества jet $\rightarrow \gamma$ событий различ- нкциями в матричном методе ляция в СО количества jet $\rightarrow \gamma$ событий для раз- нисла интервалов в КО в матричном методе ления по переменной Δz для событий с отбором струй тативность γ + jets выборки ределение γ + jets событий	 67 72 73 74 75 76 76 76
С А В Г	писо Рас соб Экс нып Экс лич Рас по По Д.1 Д.2	ж испо спреде ытий (страпо ми фу) страпо иного ч спреде числу презен Распр Распр	ользованных источников ления по различным переменным до нормировки jet $\rightarrow \gamma$ в методе интервалов ляция в СО количества jet $\rightarrow \gamma$ событий различ- нкциями в матричном методе ляция в СО количества jet $\rightarrow \gamma$ событий для раз- нисла интервалов в КО в матричном методе ления по переменной Δz для событий с отбором струй тативность $\gamma + jets$ выборки еделение $\gamma + jets$ событий	 67 72 73 74 75 76 76 76 77

СПИСОК СОКРАЩЕНИЙ И СПЕЦИАЛЬНЫХ ТЕРМИНОВ

- БАК Большой адронный коллайдер
- ВД Внутренний детектор
- КО Контрольная область
- КХД Квантовая хромодинамика
- МК Монте-Карло
- МКН Монте-Карло наложения
- МНК Метод наименьших квадратов
- МС Мюонный спектрометр
- СМ Стандартная модель
- СО Сигнальная область
- ФРП Функция распределения плотности партонов
- ЭМК Электромагнитный калориметр
- АВСD Двумерный метод боковых интервалов
- Пайлап Множественные *pp*-взаимодействия, происходящие внутри одного пересечения сгустков протонов

ВВЕДЕНИЕ

На сегодняшний день стандартная модель (СМ) [1] является основной теорией в области физики элементарных частиц, наиболее точно описывающей экспериментальные данные. Взаимодействия между частицами осуществляются путем обмена калибровочными бозонами. Механизм Хиггса объясняет наличие масс калибровочных бозонов и фермионов. Предсказываемый данным механизмом бозон Хиггса был экспериментально обнаружен в 2012 году [2; 3] на Большом адронном коллайдере (БАК), завершив формирование СМ. Тем не менее не все экспериментальные результаты могут быть объяснены вышеупомянутой теорией. Например, она не включает гравитационное взаимодействие [4], не описывает темную материю [5], не учитывает ненулевую массу нейтрино [6], на что указывает существование нейтринных осцилляций. Кроме того, СМ не объясняет проблему иерархии [7] и барионную асимметрию Вселенной [8].

Таким образом, СМ не является окончательной теорией и нуждается в расширении. Это мотивирует проводить исследования, целью которых является нахождение отклонений величин частот образования известных частиц от теоретических предсказаний, что в результате позволит заключить о проявлениях т.н. «новой физики».

Процессы дибозонного рождения чувствительны к отклонениям от СМ и поэтому их рассмотрение крайне важно для проверки электрослабого сектора СМ. В данной работе исследуется процесс ассоциированного рождения Z-бозона с фотоном в результате pp-столкновений. Неабелева группа симметрии $SU(2)_L \times U(1)_Y$ диктует существование тройных и четверных бозонных вершин электрослабой модели. Для Z-бозона разрешенной тройной вершиной является ZW^+W^- . Нейтральные аномальные трехбозонные вершины $ZZ\gamma$ и $Z\gamma\gamma$ отсутствуют в СМ на древесном¹ уровне. Исследуемый процесс рождения $Z\gamma$ может быть использован для поиска доказательств существования таких «аномальных» трехбозонных вершин.

В качестве конечного состояния Z-бозона рассматривается нейтринная мода распада ($Z \rightarrow \nu \bar{\nu}$) из-за её большей вероятности (~ 20%) по сравнению с модой распада в заряженные лептоны (~ 6.7%) и меньшей

 $^{^1 {\}rm «Древесными»}$ называются диаграммы Фейнмана без петель.

загрязненностью фоновыми процессами в сравнении с распадом по адронному каналу (~ 70%). На рисунке 1 представлены диаграммы Фейнмана для процесса $Z(\rightarrow \nu \bar{\nu})\gamma$, диаграмма (а) иллюстрирует процесс излучения начального состояния, в котором фотон излучается одним из начальных кварков, диаграмма (б) – пример аномальной тройной вершины, запрещенной в СМ.

Рисунок 1 — Диаграммы Фейнмана ассоциированного рождения Z-бозона с фотоном. Диаграмма (а) предсказывается СМ. Диаграмма (б) имеет аномальную тройную вершину и выходит за рамки СМ

Ранее исследования с нейтринным конечным состоянием проводились на LEP на установках ALEPH [9], DELPHI [9; 10], OPAL [11] и L3 [12], а также на Tevatron на установках CDF [13] и D0 [14; 15]. Текущее исследование процесса $Z(\rightarrow \nu \bar{\nu})\gamma$ на БАК на установке ATLAS улучшает предыдущие результаты ATLAS [16] и результаты CMS [17; 18], полученные при существенно меньших энергиях.

Распад Z-бозона в нейтрино не может быть зарегистрирован детектором напрямую. Таким образом, конечное состояние $pp \rightarrow \nu \bar{\nu} \gamma + X$ восстанавливается по потерянному поперечному импульсу и наличию изолированного фотона высокой энергии. Однако сигнатура исследуемого процесса может быть воспроизведена в ряде фоновых процессов, которые необходимо оценить с высокой точностью. Ввиду этого, **цель данной работы** заключается в оценке числа фоновых јет $\rightarrow \gamma$ событий, обусловленных неверной идентификацией адронной струи как фотона, и оценке доли множественных *pp*-взаимодействий, обусловленных пересечением сгустков протонов, т.н. пайлап фон, для процесса $Z(\nu\bar{\nu})\gamma$ в *pp*-столкновениях с $\sqrt{s} = 13$ ТэВ.

В соответствии с целью поставлены следующие задачи:

- разработать методы оценки числа фоновых jet $\rightarrow \gamma$ событий для $Z(\nu\bar{\nu})\gamma$ процесса;
- разработать методы оценки числа пайлап событий для $Z(\nu\bar{\nu})\gamma$ процесса.

Научная новизна работы:

- Анализ процесса впервые проведен на полном наборе данных Run2 за 2015–2018 гг.
- Впервые для $Z(\nu\bar{\nu})\gamma$ процесса реализованы альтернативные подходы оценки числа фоновых событий jet $\rightarrow \gamma$ из данных.
- Впервые для Z(νν)γ процесса реализован альтернативный подход оценки числа пайлап событий, основанный на Монте–Карло.

Практическая значимость:

- Реализованные методы оценки числа фоновых процессов из данных с неверной идентификацией адронной струи как фотона могут быть применены в исследованиях любых других многобозонных конечных состояний в протон-протонных столкновениях в эксперименте ATLAS, сопровождающихся рождением фотонов.
- Реализованный метод оценки числа фоновых событий, обусловленных множественными *pp*-взаимодействиями при пересечении сгустков протонов, основанный на Монте–Карло, может быть применен в исследованиях любых других дибозонных конечных состояний в *pp*столкновениях в эксперименте ATLAS.

1 ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

1.1 СТАНДАРТНАЯ МОДЕЛЬ

Стандартная модель – современная теория, которая позволяет описать свойства и взаимодействия элементарных частиц на основе релятивистской квантовой теории поля с группой калибровочной симметрии $SU(3) \times SU(2)_L \times U(1)_Y$ [19; 20]. В СМ есть два типа элементарных частиц. Частицы с полуцелым спином являются фермионами и подчиняются статистике Ферми-Дирака. Частицы с целым спином являются бозонами и подчиняются статистике Бозе-Энштейна. Такое деление частиц не случайно, в нем проявляется отличие между частицами вещества (фермионами) и частицами поля (бозонами). Согласно запрету Паули в одном квантовом состоянии может находиться не более одного фермиона и неограниченное количество бозонов. На рисунке 2 представлены частицы СМ и их основные свойства (масса, электрический заряд и спин). Кроме того, каждой частице в СМ соответствует античастица, обладающая противоположными зарядами и квантовыми числами.

Рисунок 2 — Стандартная модель в физике элементарных частиц

Фермионы подразделяются на лептоны и кварки. Каждому электри-

чески заряженному лептону ставится в соответствие своё электрически нейтральное нейтрино. Лептоны группируются в три поколения ($e \nu_e$), ($\mu \nu_{\mu}$), ($\tau \nu_{\tau}$) по возрастанию массы, и характеризуются слабым изоспином, слабым гиперзарядом и электрическим зарядом. Кварки аналогично лептонам группируются в три поколения (u d), (c s), (t b) и дополнительно характеризуются цветовым зарядом.

Упомянутые выше заряды отвечают за различные взаимодействия частиц между собой. СМ включает 3 типа фундаментальных взаимодействий: сильное, электромагнитное (ЭМ) и слабое, каждое из которых осуществляется путем обмена калибровочными бозонами (т.н. частицамипереносчиками). Наличие цветового заряда у кварков обуславливает возможность сильного взаимодействия, которое переносится 8-ю безмассовыми глюонами. Электромагнитное взаимодействие связано с наличием у частиц ненулевого электрического заряда, и переносится безмассовым фотоном. Слабое взаимодействие связано со слабым изоспином фермионов, и переносится массивными W^{\pm} и Z^0 бозонами. Сильное взаимодействие описывается Квантовой Хромодинамикой (КХД) [21], в то время как слабое и электромагнитное взаимодействия объединены в рамках одной математической структуры и рассматриваются как проявление одного — электрослабого взаимодействия.

Наличие бозона Хиггса в СМ объясняет наличие масс калибровочных бозонов и фермионов через механизм «спонтанного» нарушения симметрии [22; 23]. При этом фотон и глюон являются безмассовыми из-за остаточной симметрии.

1.2 КАЛИБРОВОЧНАЯ ТЕОРИЯ

Ключевым положением CM является требование инвариантности её лагранжиана относительно преобразований полей под действием определенных групп симметрии, параметры которых зависят от пространственновременных точек.

Вектор Ψ , компонентами которого являются n комплексных полей Ψ_i

$$(i = \overline{1, n}),$$

$$\Psi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \vdots \\ \Psi_n \end{pmatrix}$$

$$(1.1)$$

преобразуется под действием элемента группы $\hat{U} = \hat{U}(x)$ следующим образом $\Psi(x) \to \hat{U}(x)\Psi(x)$. Однако при таком преобразовании лагранжиан оказывается неинвариантным в силу того, что

$$\partial_{\mu}\Psi(x) \to \partial_{\mu}(\hat{U}(x)\Psi(x)) \neq \hat{U}(x)\partial_{\mu}\Psi(x).$$
 (1.2)

Чтобы избежать этого, необходимо ввести ковариантную производную:

$$D_{\mu} = \partial_{\mu} - ig\hat{A}_{\mu}, \tag{1.3}$$

где *g*-константа связи, $\hat{A}_{\mu} = A^{i}_{\mu} \hat{t}_{i}$, A^{i}_{μ} -калибровочные поля, \hat{t}_{i} -генераторы группы с нормировочным соотношением таким как:

$$\operatorname{Tr}(\hat{t}_i \hat{t}_j) = \frac{1}{2} \delta_{ij}.$$
(1.4)

Закон преобразования для \hat{A}_{μ} имеет вид:

$$\hat{A}_{\mu} \to \hat{U}^{-1} \hat{A}_{\mu} \hat{U} - \frac{i}{g} (\partial_{\mu} \hat{U}^{-1}) \hat{U}.$$
 (1.5)

Таким образом, в лагранжиане появляется новый член, представляющий собой взаимодействие с калибровочными полями. Однако возникает необходимость введения кинетического члена калибровочных полей, который выражается через тензор напряженности $\hat{F}_{\mu\nu}$. В общем неабелевом случае тензор напряженности записывается в виде:

$$\hat{F}_{\mu\nu} = \frac{i}{g} [D_{\mu}, D_{\nu}] = \partial_{\mu} \hat{A}_{\nu} - \partial_{\nu} \hat{A}_{\mu} - ig[\hat{A}_{\mu}, \hat{A}_{\nu}].$$
(1.6)

Закон преобразования для $\hat{F}_{\mu\nu}$ имеет вид:

$$\hat{F}_{\mu\nu} \to \hat{U}^{-1} \hat{F}_{\mu\nu} \hat{U}. \tag{1.7}$$

Для тензора напряженности справедливо разложение по генераторам группы:

$$\hat{F}_{\mu\nu} = F^i_{\mu\nu} \hat{t}_i, \qquad (1.8)$$

где $F^i_{\mu\nu} = \partial_{\mu}A^i_{\nu} - \partial_{\nu}A^i_{\mu} - igC^i_{jk}A^j_{\mu}A^k_{\nu}$. Структурные константы группы C^i_{jk} определяются равенством:

$$[\hat{t}_j \hat{t}_k] = C^i_{jk} \hat{t}_i. \tag{1.9}$$

В итоге кинетический член калибровочных полей записывается следующим образом:

$$\mathcal{L}_{\text{калиб.}} = -\frac{1}{2} Tr(F_{\mu\nu}F^{\mu\nu}) = -\frac{1}{4} F_{\mu\nu,i}F^{\mu\nu,i}.$$
 (1.10)

1.3 ЭЛЕКТРОСЛАБЫЙ СЕКТОР

В основе электрослабого сектора лежит неабелева калибровочная группа симметрии $U(1)_Y \times SU(2)_L$. Для электромагнитного взаимодействия группой симметрии является $U(1)_Y$ – унитарная группа слабого гиперзаряда Y, которой соответствует гиперзарядовое калибровочное поле B_{μ} . Для слабого взаимодействия группой симметрии является $SU(2)_L$ – специальная унитарная группа слабого изоспина T, которой соответствует три калибровочных поля W^i_{μ} . Фермионы с левой киральностью лежат в фундаментальном представлении группы $SU(2)_L$ и преобразуются под её действием как левый изоспиновый дублет L, в то время как поля фермионов с правой киральностью лежат в тривиальном представлении группы $SU(2)_L$ и не преобразуются под её действием. Группа $U(1)_Y$ имеет единственный генератор Y/2, который является действительным числом. Группа $SU(2)_L$ имеет три генератора, которые являются матрицами Паули $\hat{\sigma}_i/2$.

При спонтанном нарушении исходной симметрии сохраняется калибровочная симметрия $U(1)_{\Im M}$ электрического заряда Q. Генератор группы остаточной симметрии связан с третьей компонентой слабого изоспина T_3 и слабым гиперзарядом У через формулу Гелл-Манна:

$$Q = T_3 + Y/2. (1.11)$$

Электрослабый лагранжиан для первого поколения лептонов имеет вид:

$$\mathcal{L}_{\Theta C} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{\mu\nu,i} + i\bar{L}\gamma^{\mu} (\partial_{\mu} - ig' \frac{Y}{2} B_{\mu} - ig \frac{\hat{\sigma}_{i}}{2} W^{i}_{\mu}) L + i\bar{e}_{R}\gamma^{\mu} (\partial_{\mu} - ig' \frac{Y_{e}}{2} B_{\mu}) e_{R}, \qquad (1.12)$$

где g' и g – константы связи гиперзарядового и слабого взаимодействий соответвственно, L – левый дублет электрона и электронного нейтрино, e_R – правый электрон. Тензоры напряженности $B_{\mu\nu}$ и $W^i_{\mu\nu}$ первичных калибровочных полей определяются следующим образом:

$$\begin{cases} B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \\ W^{i}_{\mu\nu} = \partial_{\mu}W^{i}_{\nu} - \partial_{\nu}W^{i}_{\mu} + g\epsilon^{ijk}W^{j}_{\mu}W^{k}_{\nu}. \end{cases}$$
(1.13)

Нейтральные электрослабые бозоны связаны с полями W^3_{μ} и B_{μ} следующим образом:

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & -\sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}, \qquad (1.14)$$

где $heta_W$ – угол Вайнберга, определяемый как:

$$\cos \theta_W = \frac{g}{\sqrt{g^2 + g'^2}}, \ \sin \theta_W \frac{g'}{\sqrt{g^2 + g'^2}}.$$
 (1.15)

Заряженные электрослабые бозоны являются комбинацией поле
й W^1_μ и $W^2_\mu :$

$$W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} (W^{1}_{\mu} \mp W^{2}_{\mu}). \tag{1.16}$$

Окончательно калибровочная часть электрослабого лагранжиана за-

писывается в виде:

$$\mathcal{L}_{\text{калиб.}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{\mu\nu,i} = -\frac{1}{4} A_{\mu\nu} A^{\mu\nu} - \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} - \frac{1}{4} W^{+}_{\mu\nu} W^{-\mu\nu} + \frac{g}{2} \epsilon^{ijk} \partial_{\mu} W^{i}_{\nu} W^{j,\mu} W^{k,\nu} + \frac{g^{2}}{4} \epsilon^{ijk} \epsilon^{ilm} W^{j}_{\mu} W^{k}_{\nu} W^{l,\mu} W^{m,\nu}, \qquad (1.17)$$

где

$$\begin{cases}
A_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \\
W_{\mu\nu}^{\pm} = \partial_{\mu}W_{\nu}^{\pm} - \partial_{\nu}W_{\mu}^{\pm}. \\
Z_{\mu\nu} = \partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}
\end{cases}$$
(1.18)

Наличие бозонных вершин электрослабого сектора определяется слагаемыми в выражении (1.17). На рисунке 3 показаны разрешенные тройные и четверные бозонные вершины: $W^+W^-\gamma$, W^+W^-Z и $W^+W^-W^+W^-$, W^+W^-ZZ , $W^+W^-Z\gamma$, $W^+W^-\gamma\gamma$ (вершины взаимодействия с бозоном Хиггса не перечислены). Таким образом, обнаружение указаний на наличие отсутствующих в СМ вершин будет указывать на проявление «новой физики».

Рисунок 3 — Тройные (а) и четверные (б) бозонные вершины электрослабого сектора СМ

1.4 АССОЦИИРОВАННОЕ РОЖДЕНИЕ *Z*-БОЗОНА С ФОТОНОМ В СМ

Пара кварк-антикварк от сталкивающихся протонов рождает Zбозон, который является короткоживущей частицей, распадающейся на пару фермион-антифермион. Конечное состояние Z-бозона отличается пособытийно, так как Z-бозон имеет различные каналы распада, вероятности которых предсказываются теорией. Адронный канал распада имеет наибольшую вероятность (70%), но из-за необходимости подавления большого количества фоновых процессов не используется для исследования. По этой причине лептонный канал распада особенно важен с экспериментальной точки зрения. Пары лептонов e^+e^- , $\mu^+\mu^-$ хорошо идентифицируются детектором, однако распад в заряженные лептоны имеет самую низкую вероятность (6.7%). Ввиду этого, рассматривается распад Z-бозона по нейтринному каналу распада, который происходит с вероятностью 20%.

Процесс совместного рождения Z-бозона с фотоном реализуется через механизмы излучения начального и конечного состояний. На рисунке 4 показаны диаграммы Фейнмана древесного уровня для процессов $q\bar{q} \rightarrow Z\gamma \rightarrow l^+l^-\gamma$ и $q\bar{q} \rightarrow Z\gamma \rightarrow \nu^+\nu^-\gamma$, в которых фотон излучается одним из начальных кварков. На рисунке 5 показана диаграмма Фейнмана

Рисунок 4 — Диаграммы Фейнмана древесного уровня образования $l^+l^-\gamma$ (a) и $\nu^+\nu^-\gamma$ (б) через механизм излучения начального состояния

древесного уровня для процесса $q\bar{q} \to Z \to l^+ l^- \gamma$, в котором фотон излучается в конечном состоянии одним из заряженных лептонов. Так как фотон взаимодействует только с электрически заряженными лептонами, процесс с излучением после образования Z-бозона не существует для конечного состояния с нейтрино.

Вероятность совместного рождения электронейтральных бозонов Z и γ выше, чем ZZ. Таким образом, процесс ассоциированного рождения Zбозона с фотоном, где Z распадается в пару нейтрино, представляет особый интерес для исследования, так как данный процесс является наиболее чувствительным к возможности обнаружения аномальных тройных вершин в

Рисунок 5 — Диаграмма Фейнмана древесного уровня образования $l^+l^-\gamma$ через механизм излучения конечного состояния

высокоэнергетической области.

1.5 МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Метод максимального правдоподобия – статистический метод оценки неизвестных параметров посредством максимизации функции правдоподобия.

Пусть есть некоторая выборка (X_1, X_2, \ldots, X_n) с плотностью распределения вероятностей $\mathcal{P}_{\vec{\theta}}$, зависящей от неизвестного вектора параметров $\vec{\theta}$. Функция правдоподобия определяется как совместная плотность выборки и имеет вид:

$$\mathcal{L}(X_1, X_2, \dots, X_n | \vec{\theta}) = \prod_{i=1}^n \mathcal{L}_i(X_i | \vec{\theta}).$$
(1.19)

Суть метода максимального правдоподобия заключается в нахождении такого значения вектора параметров $\hat{\vec{\theta}}$, при котором максимизируется функция $\mathcal{L}(X_1, X_2, \ldots, X_n | \vec{\theta})$, т.е.:

$$\hat{\vec{\theta}} = \arg \max_{\theta} \mathcal{L}(X_1, X_2, \dots, X_n | \vec{\theta}).$$
(1.20)

Как правило, вместо функции правдоподобия используют её логарифм, так как максимумы функций \mathcal{L} и ln \mathcal{L} совпадают. Логарифмирование позволяет перейти от произведения плотностей вероятности к сумме их логарифмов, что значительно упрощает дальнейшие вычисления.

Для нахождения оценки метода максимального правдоподобия необходимо приравнять к нулю частные производные логарифма функции правдоподобия по неизвестным параметрам $\vec{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$, где k – число неизвестных параметров. Таким образом, оценка $\hat{\vec{\theta}}$ является решением системы уравнений:

$$\begin{cases} \frac{\partial}{\partial \theta_1} \ln \mathcal{L}(X_1, X_2, \dots, X_n | \vec{\theta}) = 0, \\ \frac{\partial}{\partial \theta_2} \ln \mathcal{L}(X_1, X_2, \dots, X_n | \vec{\theta}) = 0, \\ \dots \\ \frac{\partial}{\partial \theta_k} \ln \mathcal{L}(X_1, X_2, \dots, X_n | \vec{\theta}) = 0. \end{cases}$$

2 ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

2.1 БОЛЬШОЙ АДРОННЫЙ КОЛЛАЙДЕР

Большой адронный коллайдер (БАК) [24] – самый большой и мощный в мире ускоритель на встречных пучках, предназначенный для разгона протонов и тяжелых ионов. БАК располагается в Европейской Организации по Ядерным Исследованиям (CERN). Ключевая задача БАК, заключающаяся в открытии бозона Хиггса, была выполнена в 2012 году. В настоящее время главные задачи данного ускорительного комплекса состоят в тщательном измерении характеристик бозона Хиггса, а также в поиске отклонений от предсказаний СМ в высокоэнергетической области столкновений.

БАК является кольцевым коллайдером, длина тоннеля которого составляет около 27 км. На рисунке 6 представлена схема ускорительного комплекса с указанием основных экспериментов-детекторов на нём: ATLAS, CMS, ALICE и LHCb.

Рисунок 6 — Схема ускорительного комплекса БАК

Ввиду проведения работ по оптимизации коллайдера, модернизации детекторов и электронной аппаратуры, данные на БАК набираются в течение определенного промежутка времени, называемого сеансом набора дан-

ных. Во время второго сеанса набора данных (с 2015 по 2018 гг.) энергия протон-протонных столкновений достигла 13 ТэВ.

Ускорение протонов до энергий ТэВной области реализуется в несколько этапов: сначала они проходят последовательность ускорителей меньшего размера, и только затем поступают в БАК. Протоны, полученные путем ионизации газообразного водорода, первоначально разгоняются в низкоэнергетическом линейном ускорителе LINAC 2 до энергии 50 МэВ. Далее они впрыскиваются в предускоритель бустер протонного синхротрона (PSB), где разгоняются до энергии 1.4 ГэВ. Попадая в протонный синхротрон (PS), а затем в супер протонный синхротрон (SPS), пучки протонов набирают энергии 25 ГэВ и 450 ГэВ соответственно, и, наконец, инжектируются в БАК.

В БАК для разгона протонов используются резонаторы – металлические камеры с переменным электромагнитным полем, которое нарастает и, как следствие, разгоняет сгусток протонов пучка при пролете через камеру, а также выравнивает энергию протонов в нём.

Встречные пучки частиц в БАК циркулируют по двум вакуумным трубам, диаметр каждой из которых составляет примерно 10 см. Траектория движения пучков формируется благодаря магнитному полю поворотных магнитов. Отклонения частиц от идеальной траектории в поперечной плоскости устраняются с помощью фокусирующих магнитов. Столкновение пучков осуществляется в точках расположения основных экспериментов-детекторов.

Мерой интенсивности столкновения частиц в коллайдере является мгновенная светимость L, показывающая как часто происходит процесс с сечением взаимодействия σ :

$$\frac{dN}{dt} = L\sigma,\tag{2.1}$$

где dN – количество актов взаимодействия частиц для заданного сечения. Таким образом, вероятность регистрации редких процессов, происходящих при высокоэнергетических столкновениях, зависит от величины мгновенной светимости: чем больше L, тем чаще происходят столкновения частиц из встречных пучков и тем больше данных набирает детектор. Проектная светимость БАК равна 10^{34} см⁻²с⁻¹ = 10^{-5} фб⁻¹с⁻¹, что делает его одним из самых мощных ускорителей частиц в мире. Также для оценки эффективности эксперимента используют интегральную светимость, характеризующую количество событий N, которые могут произойти при заданном сечении σ за время t набора данных детектором:

$$N = \sigma \int L \, dt. \tag{2.2}$$

Интегральная светимость, набранная в эксперименте ATLAS за второй сеанс работы БАК, составила 140 $\phi \delta^{-1}$.

2.2 ЭКСПЕРИМЕНТ АТLAS

ATLAS (A Toroidal LHC ApparatuS) [25; 26] – эксперимент на БАК, являющийся одноименным многоцелевым детектором элементарных частиц, который предназначен для исследования протон-протонных столкновений и столкновений тяжелых ионов. Схема детектора ATLAS показана на рисунке 7. Детектор обладает осевой симметрией относительно продольного направления пучка ускоренных частиц, а также трансляционной симметрией относительно точки взаимодействия. Основными подсистемами детектора являются: внутренний детектор, окруженный тонким сверхпроводящим соленоидом; электромагнитный и адронный калориметры; мюонный спектрометр.

2.2.1 Система координат детектора ATLAS

Одна из основных систем отсчета в эксперименте — прямоугольная система координат. Номинальная точка взаимодействия определяет начало системы координат. Ось x направлена от точки взаимодействия к центру кольца БАКа, ось y направлена вверх, а ось z направлена по пучку таким образом, что система координат является правой. Кроме этого, используется цилиндрическая система координат, в которой азимутальный угол ϕ отсчитывается от положительного направления оси x в плоскости xOy, а полярный угол θ отсчитывается от положительного направления оси z. Более удобно вместо угла θ использовать Лоренц-инвариантную без-

Рисунок 7 — Схема детектора ATLAS и его подсистем

размерную переменную – псевдобыстроту, которая показывает отклонение траектории движения элементарной частицы от оси пучка, и определяется следующим образом:

$$\eta = -\ln\left(\tan\frac{\theta}{2}\right).\tag{2.3}$$

Быстрота, не являющаяся Лоренц-инвариантной переменной, определяется как:

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z},$$
 (2.4)

где E – энергия частицы, p_z – проекция импульса частицы \vec{p} на ось z. В ультрарелятивистском пределе $(v \to 1)$ быстрота переходит в псевдобыстроту.

Импульсы частиц в момент столкновения направлены вдоль оси z, а значит их поперечные компоненты равны нулю. Ввиду этого, сумма поперечных компонент после столкновения будет также равна нулю. Поперечные импульс и энергия определяются согласно формулам (2.5) и (2.6) как:

$$p_T = \sqrt{p_x^2 + p_y^2} = |\vec{p}| \sin \theta,$$
 (2.5)

$$E_T = E\sin\theta. \tag{2.6}$$

Угловое расстояние между частицами выражается с помощью псевдобыстроты и азимутального угла как:

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}.$$
(2.7)

2.2.2 Внутренний детектор

Внутренний детектор (ВД) расположен в центральной части эксперимента ATLAS. ВД состоит из трех подсистем, изображенных на рисунке 8 в порядке удаления от трубы БАКа: пиксельный и микростриповый кремниевый детекторы, охватывающие диапазон псевдобыстрот $|\eta| < 2.5$; трековый детектор переходного излучения, охватывающий диапазон псевдобыстрот $|\eta| < 2.0$.

Рисунок 8 — Схема внутреннего детектора в эксперименте ATLAS

Наиболее близко к области столкновения пучков частиц располагается пиксельный детектор, задача которого заключается в наиболее точной реконструкции вершин взаимодействий. Пиксельный детектор состоит из трёх слоёв в барреле², каждый из которых закрыт с торцов дисками. На

 $^{^2 \}ensuremath{\mathrm{U}}$ ентральная часть детектора, представляющая форму цилиндра.

слоях и дисках пиксельного детектора располагаются кремниевые матрицы, которые состоят из пикселей размером 50 мкм × 400 мкм. Заряженная частица пересекает три слоя пиксельного детектора, создавая в результате ионизационных потерь свободные носители заряда – электроны и дырки. Приложенное к пикселю напряжение обеспечивает дрейф пары в определенную сторону пикселя и формирует сигнал. Интегральная доза излучения влияет на работу датчиков детектора. С целью уменьшения воздействия радиации на пиксели, детектор работает при температуре от -5 до -10° С.

Микростриповый кремниевый детектор, работающий по p-i-n технологии, восстанавливает треки частиц на расстоянии от 0.3 м до 0.5 м от оси столкновения. Данный детектор состоит из 4-х двухсторонних слоёв в барреле и 18-и дисков в торцевой части, на которых располагаются отдельные модули со стрипами размером 6.4 см × 12 см, нанесенными с периодом равным 80 мкм. Механизм работы микрострипового кремниевого детектора подобен пиксельному.

Детектор переходного излучения представляет собой систему из порядка 350848 дрейфовых тонкостенных трубок диаметром 4 мм, которые располагаются параллельно оси z в барреле и поперечно направлению оси zв торцевой части. Трубки заполнены активной газовой смесью $Xe/CO_2/O_2$ (70%/27%/3%), ионизирующейся при прохождении заряженных частиц. Для снятия сигнала в центре трубок вдоль их оси размещены анодные нити. Также пространство между трубками заполнено полипропиленовым материалом, что приводит к возникновению переходного излучения при прохождении заряженных частиц через границу раздела двух сред с разными показателями преломления.

Магнитное поле величиной 2 Тл от соленоида с током, расположенного за ВД, искривляет треки заряженных частиц, что позволяет по радиусу кривизны восстановить импульс и заряд частиц.

2.2.3 Система калориметров

Калориметрическая система располагается за ВД и соленоидальным магнитом и включает в себя электромагнитный и адронный калориметры,

каждый из которых охватывает диапазон $|\eta| < 4.9$ псевдобыстрот. Задачей калориметров является измерение энергий и позиций пришедших в него частиц. При прохождении элементарных частиц через вещество калориметра образуется ливень вторичных частиц, энергия которого пропорциональна энергии исходной частицы. Калориметр представляет собой чередующиеся слои поглотителя, в которых образуются ливни вторичных частиц, и активного вещества, которое используется для регистрации энергии ионизации.

Ввиду того, что частицы, проходящие через вещество калориметров, могут участвовать во взаимодействиях разной природы (электромагнитном и сильном), используются различные виды поглотителей. Для электромагнитного калориметра (ЭМК) поглотителем является свинец, а чувствительным веществом – жидкий аргон, охлаждённый до 90 К. Для адронного калориметра поглотителем в баррельной части является сталь, чувствительным веществом – пластинки органического сцинтиллятора; в торцевой части поглотитель — медь, чувствительное вещество – жидкий аргон.

Высокая степень сегментирования ЭМК в области $|\eta| < 2.5$ псевдобыстрот позволяет достоверно идентифицировать электроны и фотоны, за исключением переходной области $1.37 < |\eta| < 1.52$ между цилиндрической и торцевыми частями калориметра. Адронный калориметр, расположенный непосредственно за пределами ЭМК, предназначен для измерения энергии адронов. Кроме этого, система калориметров позволяет вычислять недостающую поперечную энергию $E_{\rm T}^{\rm miss}[27]$ и обеспечивает снижение фонового потока мюонов, достигающих мюонной системы.

2.2.4 Мюонный спектрометр

Мюонный спектрометр (MC) предназначен для реконструкции траекторий мюонов, измерения их импульсов и идентификации мюонов высоких энергий в области $|\eta| < 2.7$ псевдобыстрот. MC содержит четыре подсистемы: мониторируемые дрейфовые камеры и катодные стриповые камеры, которые обеспечивают высокоточное определение траекторий; резистивные плоские камеры и тонкозазорные камеры, которые используются в качестве триггера. Магнитное поле от тороида с током, окружающее мюонную систему, искривляет треки мюонов в направлении полярного угла, что позволяет по радиусу кривизны восстановить их импульс.

2.2.5 Триггерная система

Триггерная система обеспечивает выделение интересных событий среди огромного количества фоновых и понижает входную частоту, которая составляет ~40 МГц, до порядка ~100 кГц. Уровни, реализующие триггер: триггер первого уровня, использующий ограниченное количество информации детектора от калориметров и триггерных мюонных камер для принятия решения за менее чем 2 мкс и снижающий частоту до ~75 кГц; триггер второго уровня, использующий дополнительно информацию от внутреннего детектора, понижает частоту до ~1 кГц. Для каждого из событий, отобранных вторым уровнем триггера, выделяется один участок памяти, в котором собираются все фрагменты события для его обработки с использованием стандартного программного обеспечения реконструкции событий детектора ATLAS и алгоритмов анализа.

3 ФОНОВЫЕ ПРОЦЕССЫ И ОТБОР СОБЫТИЙ

В настоящей работе используются наборы данных Run2 ppстолкновений с энергией в системе центра масс $\sqrt{s} = 13$ ТэВ и интегральной светимостью 140 фб⁻¹, набранные детектором ATLAS в период с 2015 по 2018 гг.

Также в работе используются Монте-Карло (МК) наборы, прошедшие полное моделирование и реконструкцию для геометрии детектора ATLAS. Сигнальный процесс $Z(\nu\bar{\nu})\gamma$, в котором присутствуют вершины сильного взаимодействия, т.н. КХД процесс, моделируется с помощью МК генератора Sherpa [28]. Процессы без участия глюонов, т.н. электрослабые процессы, $Z(\nu\bar{\nu})\gamma$ и $W\gamma$ моделируются с помощью генератора MadGraph [29]. Sherpa используется для генерации КХД процессов $Z(\nu\bar{\nu}) + \text{jets}, \gamma + \text{jets}, W\gamma$ и $Z(ll)\gamma$. Powheg [30] используется для генерации $t\bar{t}$ событий. Адронизация³ осуществляется с помощью моделей партонных ливней⁴ Pythia8 [31] и Herwig7 [32].

3.1 ОТБОР ФОТОНОВ

Преимущественно фотоны реконструируются на основе кластеров⁵ в ЭМК. При прохождении фотона в веществе внутреннего детектора возможно рождение электрон-позитронной пары, которая может быть зарегистрирована трековым детектором. Фотоны, восстановленные в ВД из такой электрон-позитроннной пары, называют конверсионными. Кластеры без совпадения с треками в ЭМК классифицируются как неконверсионные. Форма ливня [33], создаваемая в ЭМК кандидатами в фотоны, позволяет отличить фотоны от адронных струй, которые создают схожий отклик в детекторе. На основе переменных ливня для фотонов определяется два типа селекции: «слабая» и «жесткая» идентификации. «Слабая» селекция, используемая для триггерных целей, предоставляет возможность получить

 $^{^{3}\}mbox{Обесцвечивание}$ кварковых состояний генератором событий.

 $^{^{4}{\}rm Ч}$ ереда превращений, через которые проходят партоны после их рождения до адронизации.

⁵Энерговыделение в калориметре.

сравнительно высокую эффективность идентификации фотонов при низком уровне подавления по переменным адронной утечки. «Жесткая» селекция обеспечивает эффективность идентификации фотонов на уровне 85%.

Кандидаты в фотоны должны быть реконструированы в области псевдобыстрот $|\eta| < 2.37$. Также накладываются отборы по трековой и калориметрической изоляциям, они соответствуют изоляционной рабочей точке FixedCutLoose [34], информация о которой представлена в таблице 1.

Таблица 1 — Определение изоляционной рабочей точки FixedCutLoose

Изоляция	Калориметрическая изоляция	Трековая изоляция
FixedCutLoose	$E_{\rm T}^{\rm cone20} - 0.065 \cdot p_{\rm T}^{\rm cone20} < 0 \ \Gamma \Im B$	$p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{\gamma} < 0.05$

Здесь $E_{\rm T}^{\rm cone20}$ задает энерговыделение в электромагнитном калориметре в конусе с раствором $\Delta R = 0.2$ вокруг фотонного кандидата, $p_{\rm T}^{\rm cone20}$ есть сумма поперечных импульсов в конусе с раствором $\Delta R = 0.2$.

3.2 ФОНОВЫЕ ПРОЦЕССЫ

Сигнатура исследуемого $Z(\nu\bar{\nu})\gamma$ процесса может быть воспроизведена в ряде фоновых процессов, вклад которых указан в % по отношению к данным:

- (~ 35%) γ + jet, в котором большой $E_{\rm T}^{\rm miss}$ обусловлен неверно измеренной энергии струй;
- (~ 15%) $W(\to l\nu)\gamma$, где τ может распадаться на адроны, или, где электрон или мюон от распада τ или W не регистрируется;
- (~ 11%) $W(e\nu)$, моно-*t* и $t\bar{t}$ события, где электрон в конечном состоянии неверно идентифицируется как фотон $e \to \gamma$;
- (~ 8%) jet $\rightarrow \gamma$, к которому относятся $W(\tau \nu)$, где τ лептон распадается на адроны, а также Z + jets и многоструйные процессы, где одна из струй неверно идентифицируется как фотон;
- (~ 0.9%) $Z(ll)\gamma$, где τ может распадаться на адроны, или, где электрон или мюон от распада τ или Z не регистрируется;

• (~ 0.8%) $t\bar{t}\gamma$, в котором один или оба W бозона от распада t-кварка распадаются на лептоны, а затем τ либо распадается на адроны, либо не восстанавливается.

Кроме этого, с первичной вершиной, т.е. вершиной взаимодействия протонных партонов, которая является источником процесса с высоким переданным импульсом, связан фон, обусловленный множественными *pp*взаимодействиями, происходящими внутри пересечения сгустков протонов, вследствие чего *Z*-бозон может быть ассоциирован с фотоном из другого *pp*-столкновения, т.н. пайлап фон [35].

3.2.1 Отбор событий

Конечное состояние⁶ $Z(\nu\bar{\nu})\gamma$ характеризуется высоким потерянным поперечным импульсом от $\nu\bar{\nu}$, а также наличием лидирующего⁷ изолированного «жесткого» фотона. Ограничение на поперечный импульс фотона $E_{\rm T}^{\gamma} > 150$ ГэВ обусловлено использованием однофотонного триггера $E_{\rm T}^{\gamma} > 140$ ГэВ. В таблице 2 приведены критерии отбора для событий кандидатов процесса $Z(\nu\bar{\nu})\gamma$.

Таблица 2 — Критерии отбора для событи	й кандидатов процесса Z	$(\nu \bar{\nu})$	$)\gamma$
--	---------------------------	-------------------	-----------

Переменная	Ограничение	
E_{T}^{γ}	> 150ГэВ	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 130 \ \Gamma$ эВ	
Число жестких фотонов	$N_{\gamma} = 1$	
Пептонное вето	$N_{\mu} = 0, N_e = 0$	
	$N_{ au}=0$	
Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$	> 11	
$ \Delta \phi(ec{p_{ ext{T}}}^{ ext{miss}},\gamma) $	> 0.6	
$ \Delta \phi(ec{p_{ ext{T}}}^{ ext{miss}},j_1) $	> 0.3	
$ \Delta z $	< 250 MM	

⁶Под конечным состоянием подразумевается набор физических объектов, зарегистрированных и идентифицированных в детекторе в рамках одного события.

 $^{^7 \}mathrm{Л}$ идирующим называется объект с наибольшим восстановленным поперечным импульсом p_T в событии.

Переменная $E_{\rm T}^{\rm miss}$ есть потерянная поперечная энергия, величина которой определяется модулем вектора потерянного поперечного импульса $|\vec{p}_{\rm T}^{\rm miss}|$. Переменная $\vec{p}_{\rm T}^{\rm miss}$ есть сумма поперечных импульсов частиц в конечном состоянии со знаком минус. Значимость $E_{\rm T}^{\rm miss}$ [36] — это величина, отделяющая события с правдивой величиной потерянной поперечной энергии, по которой можно судить о наличии нейтрино, от событий с ложной величиной $E_{\rm T}^{\rm miss}$, в основном обусловленной либо неполной реконструкцией адронных струй, либо неверным измерением их энергии, что приводит к увеличению изначально низкой величины потерянного поперечного импульса. Значимость $E_{\rm T}^{\rm miss}$ (\mathcal{S}) определяется согласно формуле (3.1) для проверки гипотезы о том, что величина полного поперечного импульса $p_{\rm T}^{\rm inv}$, пе-

$$S^{2} = 2 \ln \frac{\max_{p_{\mathrm{T}}^{\mathrm{inv}} \neq 0} \mathcal{L}(E_{\mathrm{T}}^{\mathrm{miss}} | p_{\mathrm{T}}^{\mathrm{inv}})}{\max_{p_{\mathrm{T}}^{\mathrm{inv}} = 0} \mathcal{L}(E_{\mathrm{T}}^{\mathrm{miss}} | p_{\mathrm{T}}^{\mathrm{inv}})}, \qquad (3.1)$$

где $\mathcal{L}(E_{\mathrm{T}}^{\mathrm{miss}}|p_{\mathrm{T}}^{\mathrm{inv}})$ – функция правдоподобия. В явном виде значимость определяется как:

$$S = \frac{|E_{\rm T}^{\rm miss}|}{\sigma_L \sqrt{(1 - \rho_{LT}^2)}},\tag{3.2}$$

где σ_L – дисперсия измеренного $E_{\rm T}^{\rm miss}$ в продольном направлении, ρ_{LT} – корреляционный фактор измерения продольной и поперечной компонент $E_{\rm T}^{\rm miss}$. Таким образом, ограничения на переменные $E_{\rm T}^{\rm miss}$ и значимость $E_{\rm T}^{\rm miss}$ позволяют уменьшить вклад процессов, которые не содержат нейтрино.

Вето на заряженные лептоны позволяет уменьшить вклад фоновых $W(\to l \nu)\gamma$ и $Z(ll)\gamma$ событий.

Переменная Δz есть расстояние между продольными положениями первичной вершины z_{vtx} и кандидата в фотон z_{γ} . Ограничение на переменную $|\Delta z|$ позволяет подавить фон, обусловленный конфигурацией пучка протонов [37].

Ограничения на угловые переменные $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \gamma)|$ и $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j_1)|$, определяющие разность азимутальных углов между $\vec{p}_{\rm T}^{\rm miss}$ и фотоном и лидирующей адронной струей соответственно, также уменьшают вклад ряда фоновых процессов.

4 МЕТОДЫ ОЦЕНКИ ФОНА, ОБУСЛОВЛЕННОГО НЕВЕРНОЙ ИДЕНТИФИКАЦИЕЙ АДРОННОЙ СТРУИ КАК ФОТОНА

Отборы, перечисленные в таблице 2, для процесса ассоциированного рождения Z-бозона с фотоном требуют наличия изолированного фотона, удовлетворяющего «жесткому» идентификационному критерию. Однако этот отбор могут проходить и адронные струи, содержащие нейтральные π^0 и η^0 мезоны. Пара фотонов от распада нейтральных мезонов создает сигнатуру электромагнитного ливня схожую с сигнатурой ливня от отдельного изолированного фотона, так как отклики пары фотонов могут накладываться друг на друга.

Ввиду этого, в настоящей работе производится оценка фона, обусловленного неверной идентификацией адронной струи как фотона (jet $\rightarrow \gamma$). Наибольшая доля jet $\rightarrow \gamma$ событий приходится на процессы Z+jet, $W(\tau\nu)$, где τ лептон распадается на адроны, и на многоструйные процессы.

Фоны, обусловленные неверной идентификацией, плохо моделируются с помощью MK, поэтому для получения наиболее точной оценки числа таких событий необходимо использовать методы, основанные на данных. Одним из основных методов оценки jet $\rightarrow \gamma$ фона, основанных на данных, является двумерный метод боковых интервалов (ABCD метод) [38; 39]. Однако данный подход имеет ряд недостатков. Например, ABCD метод требует оптимизацию областей фазового пространства, при которой корреляция между дискриминационными переменными минимизирована. А значит, реализация ABCD метода может быть времязатратной, и его применение не всегда может быть корректным, что дает мотивацию для реализации более оптимальных подходов.

Таким образом, в разделе 4.1 представлено подробное описание альтернативного способа оценки количества jet $\rightarrow \gamma$ событий из данных, а именно метода интервалов, который был впервые адаптирован для $Z(\nu \bar{\nu})\gamma$ процесса. Кроме этого, в разделе 4.2 представлено описание разработанно-

29

го матричного метода оценки количества jet $\rightarrow \gamma$ событий из данных.

4.1 МЕТОД ИНТЕРВАЛОВ

В методе интервалов фазовое пространство разделяется на четыре ортогональные области на основе критерия изоляции фотона и кинематических отборов:

- Сигнальная область (CO): события проходят кинематические отборы, перечисленные в таблице 2, и содержат лидирующий фотон, который удовлетворяет критерию изоляции.
- Контрольная область 1 (KO1): события проходят отборы, формирующие ортогональную CO по выбранным переменным, и содержат лидирующий фотон, который удовлетворяет инвертированному критерию изоляции.
- Контрольная область 2 (КО2): события проходят кинематические отборы СО и содержат лидирующий фотон, который удовлетворяет инвертированному критерию изоляции.
- Контрольная область 3 (КОЗ): события проходят отборы, формирующие ортогональную СО по выбранным переменным, и содержат лидирующий фотон, который удовлетворяет критерию изоляции.

Во всех областях фотон удовлетворяют «жесткому» идентификационному критерию. Схематическая иллюстрация определения СО и контрольных областей в методе интервалов приведена на рисунке 9.

В основе метода интервалов лежит предположение о том, что имеется связь между количеством фоновых jet $\rightarrow \gamma$ событий в областях KO1 и KO3, KO2 и CO, ортогональных между собой по изоляции. Ввиду этого, вводится параметр *T*, который определяется как:

$$T = \frac{N_{CR3}^{\text{jet} \to \gamma}}{N_{CR1}^{\text{jet} \to \gamma}} = \frac{N_{SR}^{\text{jet} \to \gamma}}{N_{CR2}^{\text{jet} \to \gamma}},$$
(4.1)

где $N_{CR1}^{\text{jet}\to\gamma}$, $N_{CR2}^{\text{jet}\to\gamma}$, $N_{CR3}^{\text{jet}\to\gamma}$ и $N_{SR}^{\text{jet}\to\gamma}$ – количество событий jet $\to \gamma$ в KO1, KO2, KO3 и CO соответственно.

Рисунок 9 — Схематическая иллюстрация определения СО и контрольных областей в методе интервалов

Для того чтобы избежать зависимости от изоляции и повысить точность оценки jet $\rightarrow \gamma$ событий, неизолированные KO1 и KO3 разделяются на последовательные интервалы переменной изоляции. Таким образом, параметр $T_{(i)}$ в каждом интервале определяется как:

$$T_{(i)} = \frac{N_{CR3(i)}^{\text{jet} \to \gamma}}{N_{CR1(i)}^{\text{jet} \to \gamma}},\tag{4.2}$$

где $N_{CR1(i)}^{\text{jet}\to\gamma}$, $N_{CR3(i)}^{\text{jet}\to\gamma}$ – количество jet $\to \gamma$ событий в *i*-ом интервале KO1 и KO3 соответственно.

Количество jet
 $\rightarrow \gamma$ событий в каждом интервале из KO1 вычисляется как:

$$N_{CR1(i)}^{\text{jet}\to\gamma} = N_{CR1(i)}^{\text{data}} - N_{CR1(i)}^{\text{sig}} - N_{CR1(i)}^{\text{bkg}}, \qquad (4.3)$$

где $N_{CR1(i)}^{\text{data}}$, $N_{CR1(i)}^{\text{sig}}$ и $N_{CR1(i)}^{\text{bkg}}$ – количество событий в *i*-ом интервале КО1 в данных, сигнальном процессе и фоновых процессах, не относящихся к оцениваемому фону jet $\rightarrow \gamma$. Аналогичным образом определяется количество jet $\rightarrow \gamma$ событий в КО2.

Оценка параметра производится в каждом интервале путем норми-

ровки общего числа событий в КОЗ:

$$N_{CR3(i)}^{\text{data}} = N_{CR3(i)}^{\text{sig}} + N_{CR3(i)}^{\text{bkg}} + N_{CR3(i)}^{\text{jet}\to\gamma},$$
(4.4)

где $N_{CR3(i)}^{\text{data}}$, $N_{CR3(i)}^{\text{sig}}$, $N_{CR3(i)}^{\text{bkg}}$ – количество событий в КОЗ в данных, сигнальном процессе и фоновых процессах, не относящихся к оцениваемому фону jet $\rightarrow \gamma$. Количество jet $\rightarrow \gamma$ событий в КОЗ, $N_{CR3(i)}^{\text{jet} \rightarrow \gamma}$, пропорционально количеству jet $\rightarrow \gamma$ событий в *i*-ом интервале КО1:

$$N_{CR3(i)}^{\text{jet}\to\gamma} = T_{(i)} \cdot N_{CR1(i)}^{\text{jet}\to\gamma}, \qquad (4.5)$$

где $T_{(i)}$ – нормировочный параметр, оцениваемый в *i*-ом интервале KO1. Процедура нормировки осуществляется в KO3 для каждой из переменных, определяющих ортогональные отборы.

Полученная для каждого интервала и для каждой кинематической переменной оценка значения параметра $T_{(i)}$ применяется к количеству событий jet $\rightarrow \gamma$ в *i*-ом интервале KO2:

$$N_{SR(i)}^{\text{jet}\to\gamma} = T_{(i)} \cdot (N_{CR2(i)}^{\text{data}} - N_{CR2(i)}^{\text{sig}} - N_{CR2(i)}^{\text{bkg}}),$$
(4.6)

где $N_{CR2(i)}^{\text{data}}$, $N_{CR2(i)}^{\text{sig}}$ и $N_{CR2(i)}^{\text{bkg}}$ – количество событий в *i*-ом интервале КО2 в данных, сигнальном процессе и фоновых процессах, не относящихся к оцениваемому фону jet $\rightarrow \gamma$, $N_{SR(i)}^{\text{jet} \rightarrow \gamma}$ – оценка количества фоновых jet $\rightarrow \gamma$ событий в *i*-ом интервале неизолированной области, соответствующей кинематическим отборам СО. На основе значений $N_{SR(i)}^{\text{jet} \rightarrow \gamma}$ строится зависимость количества событий jet $\rightarrow \gamma$ от калориметрической изоляции с целью экстраполяции в СО.

4.1.1 Оптимизация областей в методе интервалов

Статистические методы оценки числа фоновых событий необходимо оптимизировать для каждого анализа уникальным образом. Ввиду этого, для определения неизолированных областей фазового пространства, введенных в разделе 4.1, инвертируются отборы по переменным: $E_{\rm T}^{\rm miss}$, значимость $E_{\rm T}^{\rm miss}$, $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \gamma)|$ и $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j_1)|$. В качестве критерия изоляции используется FixedCutLoose изоляционная рабочая точка, определение которой приведено в таблице 1. Таким образом, в неизолированных областях фотон удовлетворяет инвертированным калориметрической и трековой изоляциям. Схематическая иллюстрация разделения фазового пространства в методе интервалов на четыре оптимизированные ортогональные области показана на рисунке 10.

Кинематические отборы

Рисунок 10 — Схематическая иллюстрация разделения фазового пространства в методе интервалов на четыре оптимизированные ортогональные области

Неизолированные области разделяются на 5 интервалов по калориметрической изоляции $E_{\rm T}^{\rm cone20}/p_{\rm T}$: [0.065, 0.080, 0.095, 0.115, 0.140, 0.165]. Выбор интервалов и их количества обусловлен достаточной статистикой в каждом из них.

4.1.2 Процесс нормировки

Количество јеt $\rightarrow \gamma$ событий, вычисляемое в каждом интервале КО1 согласно формуле (4.3), используется в КО3 согласно формулам (4.4) и (4.5). Результирующие оценки значений параметров $T_{(i)}$ вычисляются путем нормировки количества јеt $\rightarrow \gamma$ событий в КО3. Нормировка производится с помощью пакета TRExFitter [40; 41] по переменным $E_{\rm T}^{\rm miss}$, значимость $E_{\rm T}^{\rm miss}$, $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \gamma)|$ и $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j_1)|$. Значение параметра $T_{(i)}$ является оценкой метода максимального правдоподобия, обеспечивающей минимум функции правдоподобия:

$$\mathcal{L}(N_{CR3(i)}^{\text{data}}|T_{(i)}) = \prod_{i=1}^{N_{\text{bins}}} \text{Pois}(N_{CR3(i)}^{\text{data}}|N_{CR3(i)}^{\text{sig}} + N_{CR3(i)}^{\text{bkg}} + T_{(i)} \cdot N_{CR1(i)}^{\text{jet}\to\gamma}). \quad (4.7)$$

Распределение количества событий в данных, сигнальном процессе, фоновых процессах, за исключением оцениваемого фона, в KO3, а также количества jet $\rightarrow \gamma$ событий для 1-ого интервала KO1 после процедуры нормировки в KO3 показаны на рисунке 11. Соответствующие распределения до процедуры нормировки в KO3 формы jet $\rightarrow \gamma$ из 1-ого интервала KO1 приведены в приложении A.

В таблице 3 приведены значения оценок параметра $T_{(i)}$ для каждого интервала по четырем переменным.

Таблица 3 — Оценки значений параметров $T_{(i)}$ для каждого интервала по четырём переменным, полученные в результате минимизации функции правдоподобия

Интервал	$T_1, E_{\mathrm{T}}^{\mathrm{miss}}$	T_2 , значимость $E_{\rm T}^{\rm miss}$	$T_3, \Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, j_1) $	$T_4, \Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \gamma) $
1	3.42 ± 0.08	3.41 ± 0.08	3.45 ± 0.08	3.33 ± 0.07
2	4.11 ± 0.09	3.97 ± 0.09	3.99 ± 0.09	3.81 ± 0.08
3	4.27 ± 0.09	4.04 ± 0.09	4.08 ± 0.09	3.87 ± 0.08
4	5.26 ± 0.12	4.99 ± 0.11	4.97 ± 0.11	4.60 ± 0.10
5	2.01 ± 0.04	1.79 ± 0.04	1.72 ± 0.04	1.51 ± 0.04

4.1.3 Линейная экстраполяция

Значения количества jet $\rightarrow \gamma$ событий для каждого интервала KO2, вычисляемые по формуле (4.3), представлены в таблице 4.

Рисунок 11 — Распределения количества событий по соответствующим переменным $E_{\rm T}^{\rm miss}$ (a), значимость $E_{\rm T}^{\rm miss}$ (б), $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \gamma)|$ (в) и $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j_1)|$ (г) в данных, сигнальном процессе, фоновых процессах, за исключением оцениваемого фона, в KO3, а также количества jet $\rightarrow \gamma$ событий для 1-ого интервала в KO1 после процедуры нормировки в KO3
Интервал	Наблюдаемое $N_{CR2(i)}^{\text{jet} \to \gamma}$
1	440 ± 20
2	320 ± 19
3	265 ± 17
4	207 ± 15
5	360 ± 20

Таблица 4 — Значения количества jet
— γ событий для каждого интервала в КО2

Таким образом, количество jet $\rightarrow \gamma$ событий в каждом интервале неизолированной области с сигнальными кинематическими отборами вычисляется путем домножения количества jet $\rightarrow \gamma$ событий в KO2 на значение оценки параметра $T_{(i)}$. На основе результатов, представленных в таблице 5, для каждой переменой была построена зависимость количества jet $\rightarrow \gamma$ событий по калориметрической изоляции и произведена линейная аппроксимация по методу наименьших квадратов (MHK). Соответствуюцие графики представлены на рисунке 12.

Таблица 5 — Значения количества jet → γ событий для каждого интервала неизолированной области с сигнальными кинематическими отборами и для каждой переменной

Интервал	$N_{SR(i)}^{\text{jet} \to \gamma}$				
micpban	$E_{\rm T}^{\rm miss}$	Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$	$ \Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, j_1) $	$ \Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\gamma) $	
1	1520 ± 80	1520 ± 80	1530 ± 80	1480 ± 80	
2	1310 ± 80	1270 ± 80	1280 ± 80	1220 ± 80	
3	1130 ± 80	1070 ± 70	1080 ± 70	1020 ± 70	
4	1090 ± 80	1030 ± 80	1030 ± 80	950 ± 70	
5	730 ± 50	650 ± 40	620 ± 40	550 ± 40	

Линейные зависимости количества jet $\rightarrow \gamma$ событий от калориметрической изоляции экстраполируются из КО2 в СО. Координата по оси абсцисс, характеризующая точку по изоляции, в которой ожидается наиболее вероятное число jet $\rightarrow \gamma$ событий в СО, является точкой экстраполяции, и определяется в результате построения распределения по изоляции для процессов с конечным состоянием Z + jets, W($\tau \nu$) а.к., взятых из МК наборов. К построенному распределению применяется фит функцией Ландау

Рисунок 12 — График зависимости каличества јет $\rightarrow \gamma$ событий от калориметрической изоляции для переменных $E_{\rm T}^{\rm miss}$, значимость $E_{\rm T}^{\rm miss}$, $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \gamma)|$ и $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j_1)|$. Пунктирная линия соответствует точке экстраполяции

(на основе близкого к 1 значения $\chi^2/N_{\rm d.o.f.}$), для которого математическое ожидание принимает значение: X = 0.013 ± 0.010 .

Значения количества jet $\to \gamma$ событий в точке X приведены в таблице 6.

Таблица 6 — Значения оценки количества jet
 $\to \gamma$ событий в точке X для каждой переменной

Переменная	Количество $N_{SR}^{\text{jet} \to \gamma}$ событий в X = 0.013
$E_{\mathrm{T}}^{\mathrm{miss}}$	2040 ± 130
Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$	2070 ± 120
$ \Delta \phi(ec{p_{ ext{T}}^{ ext{miss}}},\gamma) $	2080 ± 120
$ \Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, j_1) $	2120 ± 120

Результирующее значение jet $\rightarrow \gamma$ событий в точке X = 0.013 оцени-

Рисунок 13 — Распределение по изоляции для jet
 $\rightarrow \gamma$ MK наборов вается как среднее взвешенное:

$$\overline{N} = \frac{\sum \frac{N_k}{\sigma_k^2}}{\sum \frac{1}{\sigma_k^2}}.$$
(4.8)

Статистическая погрешность $\sigma_{\overline{N}}^2$ величины \overline{N} выражается из соотношения:

$$\frac{1}{\sigma_{\overline{N}}^2} = \sum \frac{1}{\sigma_k^2}.$$
(4.9)

Таким образом, оценка количества событий от неверной идентификации адронной струи как фотона в СО без учета систематической погрешности составляет: $N_{SR}^{\text{jet} \to \gamma} = 2080 \pm 60 (\text{стат.})$ событий.

4.1.4 Источники систематической

погрешности

К компонентам систематической погрешности количества jet $\rightarrow \gamma$ событий в методе интервалов относятся:

- погрешность, обусловленная выбором точки экстраполяции, которая вычисляется путем варьирования X на ± σ. Отклонение оценки количества jet → γ событий в точке X = 0.003 от средневзвешенного значения составляет 103 события;
- погрешность, обусловленная выбором МК генератора и модели партонного ливня для сигнального процесса, которая вычисляется с помощью альтернативного генератора MadGraph + Herwig7. Отклонение от средневзвешенного значения составляет 81 событие;
- погрешность, обусловленная разбросом оценок количества jet → γ событий для различных переменных в точке экстраполяции, значение которой составляет 80 событий.

Суммарное значение всех систематических погрешностей составляет 7%.

Итоговая оценка количества јет $\rightarrow \gamma$ событий в CO, полученная с помощью метода интервалов, составляет $N_{SR}^{\text{jet}\rightarrow\gamma} = 2080 \pm 60(\text{стат.}) \pm 150(\text{сист.})$ событий, относительная погрешность составляет 8%. Двумерный метод боковых интервалов (ABCD метод) предсказывает $N_A^{\text{jet}\rightarrow\gamma} = 1770 \pm 160(\text{стат.}) \pm 350(\text{сист.})$ событий с относительной погрешностью 22%. Оценки совпадают в пределах погрешности. Таким образом, полученная методом интервалов оценка количества јет $\rightarrow \gamma$ событий в CO является достоверной, при этом точность оценки метода интервалов выше в ~ 2.4 раза по сравнению с точностью оценки ABCD метода.

4.2 МАТРИЧНЫЙ МЕТОД

Еще одним статистическим методом оценки количества jet $\rightarrow \gamma$ событий является матричный метод. Для корректного применения этого метода не требуется проводить процедуру оптимизации областей фазового пространства, что является преимуществом перед ABCD методом. Кроме того, матричный метод прост в реализации в сравнении с методом интервалов, который является более времязатратным из-за тщательного выбора интервалов с достаточной статистикой.

Матричный метод основан на ослаблении определенного ограничения, который задает сигнальную область, загрязнённую оцениваемым фоном. Ввиду этого, в качестве такого ограничения используется критерий идентификации, позволяющий определить два типов фотонов: «мягкий» и «жесткий». «Мягкий» фотон удовлетворяет критериям отбора событий с конечным состоянием исследуемого процесса без каких-либо требований на критерий идентификации. «Жесткий» фотон дополнительно удовлетворяет всем критериям формы ЭМ ливня. Согласно этим определениям «жесткий» является подмножеством «мягкого». На рисунке 14 показана схематическая иллюстрация «жесткого» подмножества и подмножества с событиями, не проходящими «жесткий» отбор, т.н. «антижесткое⁸» подмножество, объединение которых формирует «мягкое» множество.

Рисунок 14 — Схематическая иллюстрация «жесткого», «антижесткого» подмножеств и «мягкого» множества, определяемых в терминах критерия идентификации в матричном методе

В матричном методе количество наблюдаемых в данных «жестких»/ «антижестких» событий и количество событий, содержащих «мягкий» реальный/ложный фотон, связаны с помощью эффективностей прохождения отбора на идентификационный критерий, которые определяются следующим образом:

⁸Используется обозначение !жесткий.

- Реальная эффективность (r real): вероятность того, что реальный фотон будет идентифицирован как «жесткий» фотон $(\gamma \rightarrow \gamma)$.
- Ложная эффективность (f fake): вероятность того, что реальная струя будет идентифицирована как «жесткий» фотон (jet $\rightarrow \gamma$).

Исходя из вышеизложенного, в матричной форме выполняется следующее соотношение:

$$\begin{pmatrix} N_t \\ N_{!t} \end{pmatrix} = \begin{pmatrix} r & f \\ 1 - r & 1 - f \end{pmatrix} \begin{pmatrix} N_{\text{real}\gamma}^{\text{loose}} \\ N_{\text{fake}\gamma}^{\text{loose}} \end{pmatrix}, \qquad (4.10)$$

где N_t и $N_{!t}$ – количество наблюдаемых в данных «жестких» и «антижестких» событий соответственно, $N_{\text{real}\gamma}^{\text{loose}}$ и $N_{\text{fake}\gamma}^{\text{loose}}$ – количество событий с «мягкими» реальным и ложным фотонами соответственно.

Количество событий с ложным «мягким» фотоном, $N_{\text{fake}\gamma}^{\text{loose}}$, выражается из уравнения (4.10) путем инвертирования матрицы:

$$N_{\text{fake}\gamma}^{\text{loose}} = \frac{1}{(r-f)} ((r-1)N_t + rN_{!t}).$$
(4.11)

Количество событий с ложным «жестким» фотоном, $N_{\text{fake}\gamma}$, вычисляется путем домножения уравнения (4.11) на ложную эффективность:

$$N_{\text{fake}\gamma} = f N_{\text{fake}\gamma}^{\text{loose}} = \frac{f}{(r-f)} \big((r-1)N_t + rN_{!t} \big). \tag{4.12}$$

4.2.1 Вычисление эффективностей

Эффективности r и f вычисляются согласно уравнению (4.13) в определенной области фазового пространства как отношение количества событий с реальным/ложным «жестким» фотоном, обозначаемых $N_{\text{tight}}^{\text{real}\gamma}$ и $N_{\text{tight}}^{\text{fake}\gamma}$ соответственно, к количеству событий с реальным/ложным «мягким» фотоном, обозначаемых $N_{\text{loose}}^{\text{real}\gamma}$ и $N_{\text{loose}}^{\text{fake}\gamma}$ соответственно. Реальная эффективность вычисляется с помощью МК наборов для сигнального процесса, в то время как ложная эффективность оценивается непосредственно из данных.

$$r = \frac{N_{\text{tight}}^{\text{real}\gamma}}{N_{\text{loose}}^{\text{real}\gamma}}, \qquad f = \frac{N_{\text{tight}}^{\text{fake}\gamma}}{N_{\text{loose}}^{\text{fake}\gamma}}.$$
(4.13)

Для того чтобы получить оценку количества jet → γ событий, не используя данные в сигнальной области, фазовое пространство разделяется на четыре области на основе критериев изоляции и идентификации фотона. Критерий изоляции используется с целью обогащения контрольных областей фоновыми событиями, так как струи являются преимущественно неизолированными объектами. Соответствующие области определяются следующим образом:

- Сигнальная область (СО): события проходят отборы из таблицы 2 и содержат лидирующий «жесткий» фотон, который удовлетворяет критерию изоляции.
- Контрольная область (KO): события проходят отборы из таблицы 2 и содержат лидирующий фотон, который удовлетворяет инвертированному критерию изоляции.
- Контрольная область 1 (КО1): события проходят отборы из таблицы 2 и содержат «жесткий» фотон, который удовлетворяет инвертированному критерию изоляции.
- Контрольная область 2 (КО2): события проходят отборы из таблицы 2 и содержат «антижесткий» фотон, который удовлетворяет инвертированному критерию изоляции.

В качестве критерия изоляции используется FixedCutLoose изоляционная рабочая точка. Контрольные области являются ортогональными CO по изоляции фотона. Ввиду этого, в неизолированных областях фотон удовлетворяет инвертированным калориметрической и трековой изоляциям. Согласно определению контрольных областей КО1 и КО2 являются подмножествами КО. На рисунке 15 показана схематическая иллюстрация определения CO и контрольных областей в матричном методе.

Контрольные области разделяются на последовательные интервалы по переменной изоляции $E_{\rm T}^{\rm cone20}/p_{\rm T}^{\rm cone20}$ с целью экстраполяции количества фоновых jet $\rightarrow \gamma$ событий в CO.

Таким образом, эффективности вычисляются в каждом интервале

Рисунок 15 — Схематическая иллюстрация определения CO и контрольных областей в матричном методе

неизолированной области как:

$$r_i = \frac{N_{CR1(i)}^{\text{sig}}}{N_{CR(i)}^{\text{sig}}}, \qquad f_i = \frac{N_{CR1(i)}^{\text{jet} \to \gamma}}{N_{CR(i)}^{\text{jet} \to \gamma}}, \qquad (4.14)$$

где $N_{CR1(i)}^{\text{sig}}$ и $N_{CR1(i)}^{\text{jet}\to\gamma}$ – количество МК сигнальных событий, а также количество jet $\to \gamma$ событий в *i*-ом интервале КО1 соответственно. Количество jet $\to \gamma$ событий в *i*-ом интервале КО1 определяется следующим образом:

$$N_{CR1(i)}^{\text{jet}\to\gamma} = N_{CR1(i)}^{\text{data}} - N_{CR1(i)}^{\text{sig}} - N_{CR1(i)}^{\text{bkg}}, \qquad (4.15)$$

где $N_{CR1(i)}^{\text{data}}$, $N_{CR1(i)}^{\text{sig}}$ и $N_{CR1(i)}^{\text{bkg}}$ – количество событий в данных, в сигнальном МК процессе, в фоновых процессах, за исключением оцениваемого jet $\rightarrow \gamma$ фона, в *i*-ом интервале КО1 соответственно. Аналогично определяется количество jet $\rightarrow \gamma$ событий в *i*-ом интервале КО.

Количество фоновых jet $\rightarrow \gamma$ событий, идентифицированных как «жесткие», в *i*-ом интервале неизолированной области вычисляется следующим образом:

$$N_{(i)}^{\text{jet}\to\gamma} = \frac{f_i}{r_i - f_i} \big((r_i - 1) N_{CR1(i)}^{\text{data}} + r_i N_{CR2(i)}^{\text{data}} \big), \tag{4.16}$$

где $N_{CR1(i)}^{\text{data}}$ и $N_{CR2(i)}^{\text{data}}$ – количество событий в данных в *i*-ом интервале КО1 и КО2 соответственно. Наконец, зависимость оценок количества jet $\rightarrow \gamma$ событий в каждом интервале $N_{(i)}^{\text{jet}\to\gamma}$ по калориметрической изоляции экс-

4.2.2 Оценка jet $\rightarrow \gamma$ фона с помощью матричного метода

На основе наилучшего значения $\chi^2/N_{\rm d.o.f.}$, характеризующего функцию экстраполяции, контрольные области разделяются на 8 равномерных интервалов в диапазоне [0.065–0.215]. В таблице 7 представлены значения количества событий в данных для каждого интервала KO2 и значения количества событий в данных, сигнальном и фоновых процессах, за исключением оцениваемого фона, а также в jet $\rightarrow \gamma$ процессе для каждого интервала KO. Аналогичные значения для каждого интервала KO1 представлены в таблице 8. В таблице 9 для каждого интервала представлены значения эффективностей, которые вычисляются согласно формулам (4.14), а также оценки количества jet $\rightarrow \gamma$ событий, которые вычисляются согласно формуле (4.16).

Таблица 7 — Значения количества событий в данных, фоновых процессах, за исключением оцениваемого фона, сигнальном процессе и значения количества jet $\rightarrow \gamma$ событий для каждого интервала KO, а также количество событий в данных для каждого интервала KO2

Интервал	Данные (КО)	Данные (КО2)	Φ_{OH} (кроме jet $\rightarrow \gamma$)	Сигнал	$\mathrm{jet} \to \gamma$
1	3730 ± 60	3230 ± 60	7.0 ± 1.0	15.7 ± 0.3	3710 ± 60
2	3380 ± 60	3060 ± 60	10 ± 3	13.8 ± 0.3	3360 ± 60
3	2900 ± 50	2680 ± 50	7.0 ± 0.8	11.9 ± 0.3	2880 ± 50
4	2360 ± 50	2240 ± 50	4.4 ± 0.8	10.6 ± 0.3	2350 ± 50
5	1880 ± 40	1790 ± 40	3.8 ± 1.3	9.5 ± 0.2	1870 ± 40
6	1440 ± 40	1370 ± 40	4.5 ± 0.7	8.7 ± 0.2	1420 ± 40
7	1030 ± 30	1000 ± 30	3.0 ± 0.5	7.1 ± 0.2	1020 ± 30
8	760 ± 30	720 ± 30	4.2 ± 0.8	6.32 ± 0.19	750 ± 30

Зависимость оценок количества jet $\rightarrow \gamma$ событий в каждом интервале $N_{(i)}^{\text{jet}\rightarrow\gamma}$ по калориметрической изоляции экстраполируется в СО. Как показано в разделе 4.1.3 значение точки экстраполяции принимается равным $X = 0.013 \pm 0.010$. Выбор функции экстраполяции диктуется критерием согласия Пирсона. В приложении Б приведены графики экстраполяции в

СО зависимости количества jet $\rightarrow \gamma$ событий полиномом второй и третьей степени, а также экспоненциальной функцией. Исходя из критерия $\chi^2/N_{d.o.f.}$, экспоненциальная функция демонстрирует наибольшую степень соответствия. Кроме этого, в приложении В приведены графики экстраполяции в СО зависимости количества jet $\rightarrow \gamma$ событий экспоненциальной функцией для 8, 9 и 10 интервалов.

Таблица 8 — Значения количества событий в данных, фоновых процессах, за исключением оцениваемого фона, сигнальном процессе, а также значения количества jet $\rightarrow \gamma$ событий для каждого интервала KO1

Интервал	Данные	Φ_{OH} (кроме jet $\rightarrow \gamma$)	Сигнал	$\mathrm{jet} \to \gamma$
1	490 ± 20	4.3 ± 0.9	12.7 ± 0.3	480 ± 20
2	317 ± 18	8 ± 3	11.0 ± 0.3	298 ± 18
3	216 ± 15	5.6 ± 0.7	9.2 ± 0.2	201 ± 15
4	125 ± 11	2.8 ± 0.8	8.0 ± 0.2	114 ± 11
5	90 ± 10	2.2 ± 1.2	7.0 ± 0.2	80 ± 10
6	65 ± 8	2.7 ± 0.5	6.18 ± 0.19	56 ± 8
7	37 ± 6	1.6 ± 0.4	5.01 ± 0.19	30 ± 6
8	43 ± 7	2.3 ± 0.5	4.46 ± 0.16	36 ± 7

Таблица 9 — Значения эффективностей и оценок количества jet $\rightarrow \gamma$ событий с их статистическими погрешностями для каждого интервала в KO1

Интервал	r_i	f_i	$N_{(i)}^{\text{jet} \to \gamma}$
1	0.81 ± 0.03	0.129 ± 0.006	480 ± 30
2	0.79 ± 0.03	0.089 ± 0.006	300 ± 20
3	0.77 ± 0.03	0.070 ± 0.005	201 ± 17
4	0.75 ± 0.03	0.049 ± 0.005	114 ± 12
5	0.74 ± 0.03	0.044 ± 0.005	83 ± 11
6	0.71 ± 0.03	0.039 ± 0.006	56 ± 9
7	0.70 ± 0.04	0.030 ± 0.006	30 ± 7
8	0.71 ± 0.03	0.048 ± 0.009	36 ± 7

На рисунке 16 показана экстраполяция зависимости оценок количества jet → γ событий от калориметрической изоляции экспоненциальной функцией в точку экстраполяции. В результате в точке X значение количества jet $\rightarrow \gamma$ событий составляет $N_{SR}^{\text{jet}\rightarrow\gamma} = 1900 \pm 200$ (стат.). Статистическая погрешность вычисляется как погрешность экспоненциальной функции, на значение которой влияют ошибки параметров экстраполирующей функции.

Рисунок 16 — Экстраполяция в CO зависимости оценок количества jet $\rightarrow \gamma$ событий в каждом интервале по калориметрической изоляции экспоненциальной функцией

4.2.3 Источники систематической погрешности

К основным источникам систематической погрешности в матричном методе относятся:

- погрешность, обусловленная выбором МК генератора и модели партонного ливня для сигнального процесса;
- погрешность, обусловленная выбором количества интервалов.

Для оценки систематической погрешности, связанной с выбором количества интервалов, рассматривается оценка, полученная путем разделения контрольных областей на 10 интервалов, значение которой составляет 1510 ± 180(стат.). Отклонение от центрального значения составляет 390 событий.

Для альтернативного MK генератора MadGraph + Herwig7 оценка количества jet $\rightarrow \gamma$ событий составляет 2000 ± 200(стат.). Отклонение от центрального значения составляет 100 событий.

Общая относительная систематическая погрешность составляет 21%.

Таким образом, оценка количества jet $\rightarrow \gamma$ событий в CO, полученная с помощью матричного метода, составляет $N_{SR}^{\text{jet}\rightarrow\gamma} = 1900 \pm 200 (\text{стат.}) \pm 400 (\text{сист.})$ событий с относительной погрешностью 24%. Оценка совпадает в пределах погрешностей с оценками, предсказанными ABCD методом и методом интервалов.

Достоверность результатов, полученных с помощью описанных в разделах 4.1 и 4.2 методов оценки количества јеt $\rightarrow \gamma$ событий, главным образом заключается в согласии с результатом широко применяемого, но не всегда оптимального, ABCD метода. Обоснованность использования подходов на данных для оценки вклада фона, обусловленного неверной идентификацией адронной струи как фотона, в сигнальную область подтверждается меньшими значениями погрешности оценок рассмотренных методов по сравнению со значением, которое предсказывает MK: $N_{\rm MC}^{\rm jet \rightarrow \gamma} = 2000 \pm 1300({\rm стат.})$ событий. Ввиду большой погрешности, обусловленной малой статистикой наборов $Z(\nu \bar{\nu})$ + jets и многоструйных процессов, а также проблемой с моделированием, точное определение вклада jet $\rightarrow \gamma$ событий в CO с использованием MK является недопустимым.

5 МЕТОДЫ ОЦЕНКИ ФОНА, ОБУСЛОВЛЕННОГО МНОЖЕСТВЕННЫМИ РР ВЗАИМОДЕЙСТВИЯМИ

Первичной вершиной называется вершина взаимодействия протонов, которая является источником процесса с высоким переданным импульсом. С этой вершиной связан фон, обусловленный множественными *pp*взаимодействиями, происходящими внутри пересечения сгустков протонов, т.н. пайлап фон.

В процессе с конечным состоянием $Z(\nu\bar{\nu})\gamma$ неопределенность в измерении продольной координаты z_{γ} фотона приводит к непренебрежимой вероятности того, что Z-бозон может быть ассоциирован с фотоном из другого *pp*-столкновения. Такие события наложения двух независимых процессов относятся к пайлап фону. Рисунок 17 иллюстрирует пример фонового события, обусловленного множественными *pp*-взаимодействиями, где PV0 и PV1 – первичные вершины для двух независимых процессов рождения $Z(\nu\bar{\nu})$ + jets и γ + jets соответственно, наложение которых друг на друга реконструируется в детекторе как сигнальный $Z(\nu\bar{\nu})\gamma$ процесс.

Рисунок 17 — Фоновое событие, обусловленное множественными ppвзаимодействиями, где PV0 и PV1 – первичные вершины для двух независимых процессов рождения $Z(\nu \bar{\nu})$ + jets и γ + jets соответственно

Во многих других исследованиях многобозонных конечных состояний основным методом оценки пайлап фона является метод на данных с использованием нормировочных коэффициентов. Однако применение этого метода является неподходящим в рамках текущего исследования $Z(\nu \bar{\nu})\gamma$ процесса, как это показано в разделе 5.1.1. Поэтому для оценки числа пайлап событий разработан альтернативный метод на данных, описание которого представлено в разделе 5.1.2, а также реализован метод, основанный на МК, описание которого представлено в разделе 5.2.

5.1 МЕТОДЫ НА ДАННЫХ

Оценка числа фоновых событий, обусловленных множественными *pp*взаимодействиями при пересечении сгустков, с помощью методов на данных, вычисляется в сигнальной области (CO), в которой события проходят отборы из таблицы 2 и содержат лидирующий «жесткий» фотон, отвечающий критерию изоляции из таблицы 1.

Для увеличения точности восстановленной продольной координаты z_{γ} используются конверсионные фотоны, ассоциированные как минимум с одним треком в кремниевом детекторе.

В основе методов на данных лежит распределение $\Delta z = z_{\gamma} - z_{vtx}$ продольного расстояния между положением первичной вершины z_{vtx} и положением кандидата в фотон z_{γ} . Подавляющее большинство пайлап событий распределены в области с большим Δz (десятки мм), что обосновывает выбор переменной Δz для исследования данного фона. Форма распределения Δz воспроизводится из предположения, что распределения z_{vtx} и z_{γ} идентичны и некоррелированны. На рисунке 18 показано распределение данных в СО по координате первичной вершины z_{vtx} , которое является гауссовым с шириной $\sigma_{z_{vtx}} \approx 35$ мм. Таким образом, распределение данных в СО по переменной Δz также является гауссовым с шириной равной $\sigma_{\Delta z} = \sigma_{z_{vtx}} \sqrt{2} \approx 50$ мм.

5.1.1 Оценка пайлап фона методом на данных с использованием нормировочных коэффициентов

Доля пайлап событий по отношению к данным с конверсионными фотонами вычисляется согласно формуле (5.1) в наиболее обогащенной исследуемым фоном области $|\Delta z| > 50$ мм, где в соответствии со свойствами

Рисунок 18 — Распределение данных в СО по координате первичной вершины $z_{\rm vtx}$, к которому применен фит функцией Гаусса

распределения Гаусса лежит 32% от числа всех событий с конверсионными фотонами в СО:

$$f_{\rm PU} = \frac{N_{\rm data}^{|\Delta z| > 50 \text{ mm}} - N_{\rm single \ pp}^{|\Delta z| > 50 \text{ mm}}}{0.32 \times N_{\rm data}},$$
(5.1)

где $N_{\rm data}$, $N_{\rm data}^{|\Delta z|>50 \text{ mm}}$ – количество событий с конверсионными фотонами в данных в CO, а также в области $|\Delta z| > 50$ мм соответственно. Отнормированное на данные количество сигнальных МК событий с конверсионными фотонами $N_{\rm single \, pp}^{|\Delta z|>50 \text{ mm}}$ в области $|\Delta z| > 50$ мм вычисляется следующим образом:

$$N_{\text{single pp}}^{|\Delta z| > 50 \text{ mm}} = \text{SF}_1 \times \text{SF}_2 \times N_{\text{MC}}^{|\Delta z| > 50 \text{ mm}}, \tag{5.2}$$

где SF₁ – нормировочный коэффициент, определяемый как отношение количества событий с конверсионными фотонами в данных к аналогичному количеству событий MK сигнала в области $|\Delta z| < 10$ мм, SF₂ – нормировочный коэффициент, который используется для нормировки MK сигнала на данные в определенной области по $|\Delta z|$. Согласно $Z(ll)\gamma$ анализу [42] для области $|\Delta z| > 50$ мм SF₂ = 1.48 ± 0.26.

На рисунке 19 показано распределение данных и МК сигнала, отнор-

мированного на вычисленный коэффициент $SF_1 = 3.75 \pm 0.06$, по переменной Δz для событий с конверсионными фотонами в CO.

Рисунок 19 — Распределение данных и МК сигнала, отнормированного на SF_1 , по переменной Δz для событий с конверсионными фотонами в СО

Оценка доли пайлап фона в области $|\Delta z| > 50$ мм равна $f_{\rm PU} = (-27 \pm 12)\%$.

Кроме этого, оценка пайлап фона вычисляется в области с увеличенной статистикой $|\Delta z| > 15$ мм:

$$f_{\rm PU} = \frac{N_{\rm data}^{|\Delta z| > 15 \text{ mm}} - \text{SF}_1 \times \text{SF}_2 \times N_{\rm MC}^{|\Delta z| > 15 \text{ mm}}}{0.76 \times N_{\rm data}},$$
(5.3)

где $N_{\rm data}^{|\Delta z|>15 \text{ mm}}$, $N_{\rm MC}^{|\Delta z|>15 \text{ mm}}$ – количество событий с конверсионными фотонами в данных в CO, в области $|\Delta z|>15$ мм, а также количество сигнальных MK событий с конверсионными фотонами в области $|\Delta z|>15$ мм. Согласно $Z(ll)\gamma$ анализу [42] для области $|\Delta z|>15$ мм SF₂ = 1.27 ± 0.07 .

Оценка доли пайлап фона, вычисляемая в области с менее строгим ограничением на $|\Delta z|$, составляет $f_{\rm PU} = (-10 \pm 3)\%$.

В таблице 10 представлены значения нормировочного коэффициента SF₁, оценок доли пайлап фона, вычисляемых в областях $|\Delta z| > 15$ мм и $|\Delta z| > 50$ мм с отбором по числу струй. В приложении Г приведены распределения данных и МК сигнала, отнормированного на SF₁, по переменной Δz для событий с конверсионными фотонами в CO с отбором по числу струй.

Таблица 10 — Значения нормировочного коэффициента SF₁, оценок доли пайлап фона, вычисляемых в областях $|\Delta z| > 15$ мм и $|\Delta z| > 50$ мм с отбором по числу струй. Указанные погрешности – статистические

	$N_{\rm jets} \ge 0$	$N_{\rm jets} > 0$	$N_{\rm jets} > 1$	$N_{\rm jets} = 0$
SF_1	3.75 ± 0.06	3.48 ± 0.10	4.4 ± 0.2	3.92 ± 0.08
$f_{\mathrm{PU}}^{ \Delta z >15~\mathrm{mm}},\%$	-10 ± 3	17 ± 1.7	19 ± 3	-25 ± 5
$f_{\rm PU}^{ \Delta z > 50 \text{ mm}},\%$	-27 ± 12	16 ± 3	16 ± 4	-49 ± 18

Результаты, представленные в таблице 10, говорят о многочисленных недостатках метода на данных с использованием нормировочных коэффициентов в рамках исследования $Z(\nu\bar{\nu})\gamma$ процесса, таких как: отрицательность доли пайлап событий, обусловленная плохим соответствием нормированного МК сигнала данным; низкая статистическая точность оценки доли пайлап событий, обусловленная крайне ограниченной статистикой данных с коверсионными фотонами, ассоциированными как минмум с одним треком в кремниевом детекторе; нестабильность оценки доли пайлап фона по отношению к области, в которой производится её вычисление, и к отбору по числу струй. Таким образом, метод оценки числа пайлап событий с использованием нормировочных коэффициентов является неподходящим для текущего исследования $Z(\nu\bar{\nu})\gamma$ процесса.

5.1.2 Оценка пайлап фона альтернативным методом на данных

Ввиду недостатков метода на данных с использованием нормировочных коэффициентов рассматривается альтернативный подход на данных для оценки пайлап фона.

Доля исследуемого фона по отношению к данным с конверсионными

фотонами вычисляется согласно формуле (5.4) в области $|\Delta z| > 50$ мм:

$$f_{\rm PU} = \frac{N_{\rm data\ excl.\ bkg}^{|\Delta z| > 50\ \rm mm} - N_{\rm MC}^{|\Delta z| > 50\ \rm mm}}{N_{\rm data\ \times \ 0.32}},$$
(5.4)

где N_{data} , $N_{\text{data excl. bkg}}^{|\Delta z|>50 \text{ mm}}$ и $N_{\text{MC}}^{|\Delta z|>50 \text{ mm}}$ – количество событий с конверсионными фотонами в данных, в данных за вычетом числа фоновых событий, не относящихся к исследуемому фону, в области $|\Delta z| > 50$ мм, а также количество событий с конверсионными фотонами в МК сигнале в области $|\Delta z| > 50$ мм соответственно.

В таблице 11 представлены значения количества событий с конверсионными фотонами в данных и фоновых процессах без ограничения по переменной Δz в CO, используемые для оценки доли пайлап фона.

Таблица 11 — Значения количества событий с конверсионными фотонами в данных и фоновых процессах без ограничения по переменной Δz в СО

На рисунке 20 показано распределение данных за вычетом числа фоновых событий, не относящихся к пайлап фону, и МК сигнала по переменной Δz для событий с конверсионными фотонами в СО.

Кроме того, доля пайлап фона вычисляется согласно формуле (5.5) в области $|\Delta z| > 15$ мм с увеличенной статистикой:

$$f_{\rm PU} = \frac{N_{\rm data\ excl.\ bkg}^{|\Delta z| > 15\ \rm mm} - N_{\rm MC}^{|\Delta z| > 15\ \rm mm}}{N_{\rm data\ \times \ 0.76}},$$
(5.5)

где $N_{\rm data\ excl.\ bkg}^{|\Delta z|>15\ \rm mm}$ и $N_{\rm MC}^{|\Delta z|>15\ \rm mm}$ – количество событий с конверсионными фотонами в данных за вычетом числа фоновых событий, не относящихся к исследуемому фону, в области $|\Delta z| > 15\ \rm mm$, а также количество событий с конверсионными фотонами в МК сигнале в области $|\Delta z| > 15\ \rm mm$ соответственно.

В таблице 12 представлены результаты оценки доли пайлап фона, полученные с помощью альтернативного метода на данных.

Рисунок 20 — Распределение данных за вычетом числа фоновых событий, не относящихся к пайлап фону, и МК сигнала по переменной Δz для событий с конверсионными фотонами в СО

Таблица 12 — Количество событий с конверсионными фотонами в данных за вычетом числа фоновых событий, не относящихся к оцениваемому фону, и МК сигнале в областях $|\Delta z| > 15$ мм и $|\Delta z| > 50$ мм в СО, а также оценки доли пайлап событий по отношению к данным с конверсионными фотонами в СО, вычисляемые в соответствующих областях по $|\Delta z|$. Указанные погрешности – статистические

Область	Данные – фон	$Z(\nu\bar{\nu})\gamma$	$f_{\rm PU},\%$
$ \Delta z > 15$ MM	520 ± 70	650 ± 7	-2.7 ± 1.5
$ \Delta z > 50$ MM	180 ± 50	307 ± 5	-6 ± 2

Таким образом, оценка доли фоновых событий, обусловленных множественными *pp*-взаимодействиями, полученная с помощью альтернативного подхода на данных, позволяет сделать вывод о незначительном вкладе исследуемого фона в число событий СО с конверсионными фотонами. Однако для получения результирующей оценки числа пайлап событий в СО необходимо реализовать метод, неограниченный рассмотрением событий только с конверсионными фотонами.

5.2 МЕТОД МОНТЕ-КАРЛО НАЛОЖЕНИЙ

В методе Монте-Карло наложений (МКН) используются две независимые A и B выборки на генераторном уровне для получения оценки количества событий, обусловленных множественными *pp*-взаимодействиями (обозначаемые как A+B события), в процессе дибозонного рождения (обозначаемые как AB события). Первичные вершины PV_A и PV_B, являющиеся источниками событий A и B процессов соответственно, могут накладываться друг на друга при пересечении сгустков протонов, что приводит к возникновению событий наложения A+B и их реконструкции в детекторе как сигнальных AB событий. Набор из A+B событий строится путем наложения каждого события B процесса на случайным образом выбранное событие A процесса.

Наложение В на А осуществляется путем добавления объектов (например, фотонов, струй и т.д.) из события В процесса в событие А процесса. Переменные, определяющие конечное АВ состояние, вычисляются с целью сформировать А+В событие, также именуемое как событие Монте-Карло наложения (МКН). Такие переменные используются для проверки на соответствие критериям отбора событий с конечным АВ состоянием.

Вес скомбинированного A+B события определяется следующим образом:

$$w_{\rm A+B} = \frac{w_{\rm A}w_{\rm B}}{\langle w_{\rm A} \rangle \langle w_{\rm B} \rangle} \frac{L\sigma_{\rm A+B}}{N_{\rm OMC}},\tag{5.6}$$

где $w_{A/B}$ и $\langle w_{A/B} \rangle$ – вес события для A/B процесса и средний вес для A/B процесса, σ_{A+B} – поперечное сечение для A+B события, N_{OMC} – количество МКН событий, L – интегральная светимость.

Поперечное сечение для A+B события определяется следующим образом:

$$\sigma_{\rm A+B} = \langle \mu \rangle \frac{\sigma_{\rm A} \sigma_{\rm B}}{\sigma_{\rm inel}},\tag{5.7}$$

где $\langle \mu \rangle$ – среднее число неупругих *pp*-столкновений, $\sigma_{A/B}$ – поперечное сечение для независимого A/B процесса, σ_{inel} – поперечное сечение неупругого взаимодействия.

Число пайлап событий на уровне генератора вычисляется согласно

формуле (5.8) путем суммирования весов w_{A+B} :

$$N_{\rm A+B}^{\rm gen} = \sum w_{\rm A+B}.$$
 (5.8)

Ожидаемое число пайлап событий на уровне реконструкции в СО вычисляется как:

$$N_{\rm A+B}^{\rm rec} = N_{\rm A+B}^{\rm gen} C_{\rm AB},\tag{5.9}$$

где C_{AB} – коррекционный фактор, учитывающий потери сигнальных событий при переходе от уровня генератора к уровню реконструкции.

5.2.1 Процедура комбинации событий

Метод Монте-Карло наложений оценки пайлап событий реализуется для процесса ассоциированного рождения Z-бозона с фотоном. Независимые Z-бозон и фотон, взятые из Z+jets и γ +jets MK наборов, используются в качестве A и B компонент соответственно.

Комбинация событий производится на уровне генератора в доверительной области фазового пространства для конечного $Z(\nu\bar{\nu})\gamma$ состояния, определение которой представлено в таблице 13. Аналогом потерянного поперечного импульса на уровне генератора является $p_{\rm T}^{\nu\bar{\nu}}$ – поперечный импульс Z-бозона, который распадается на пару нейтрино.

Наложение фотона из каждого γ + jets набора на случайным образом выбранный Z-бозон из каждого Z + jets набора производится до тех пор, пока переменные $\Delta R(\text{jet}, \gamma)$, $|\Delta \phi(\vec{p}_{\mathrm{T}}^{\ \nu \bar{\nu}}, \gamma)|$ и $|\Delta \phi(\vec{p}_{\mathrm{T}}^{\ \nu \bar{\nu}}, j_{1})|$ не будут соответствовать критериям отбора доверительной области фазового пространства. Процедура наложения осуществляется в пределах каждой из кампаний, различие между которыми проводится по энергии БАК в системе центра масс, геометрии детектора и версии программного обеспечения. Кампании MC16a, MC16d и MC16e отвечают 2015–2016, 2017 и 2018 календарным годам соответственно.

События Z+jets и γ +jets предварительно отбираются согласно требованиям доверительной области фазового пространства к объектам соответствующих процессов: ограничения на фотон, на струи и лептоны используются для процесса γ + jets ; ограничения на струи, лептоны, нейтрино и значимость $E_{\rm T}^{\rm miss}$ используются для процесса $Z + {\rm jets}$.

Объект	Ограничение			
Фотон	Изолированный жесткий, $E_{\rm T}^{\gamma} > 150 \ \Gamma$ эВ			
	$ \eta < 2.37$ за исключением $1.37 < \eta < 1.52$			
Струя	$ \eta < 4.5$			
	$p_{\mathrm{T}} > 50$ ГэВ			
	$\Delta R(ext{jet}, \gamma) > 0.3$			
Лептон	$N_l = 0$			
Нейтрино	$p_{\mathrm{T}}^{ uar{ u}} > 130$ ГэВ			
События	Значимость $E_{\mathrm{T}}^{\nu\bar{\nu}} > 11$			
	$ \Delta \phi(ec{p}_{\mathrm{T}}^{\; u ar{ u}}, \gamma) > 0.6$			
	$ \Delta \phi(\vec{p}_{\rm T}^{\ \nu \bar{ u}}, j_1) > 0.3$			

Таблица 13 — Определение доверительной области фазового пространства

В таблице 14 представлена информация об параметризованных по поперечному импульсу фотона $(p_{\rm T}^{\gamma})$ наборах γ + jets, которые используются для построения $Z + \gamma$ событий: $\sigma_{\gamma}^{\rm gen}$ – генераторное поперечное сечение для γ + jets процесса, $N_{\gamma}^{\rm MC16a/d/e}$ – количество событий, удовлетворяющих отборам доверительной области для соответствующих объектов γ + jets процесса, в каждой из кампании. В таблице 15 представлена информация об параметризованных по поперечному импульсу Z-бозона $(p_{\rm T}^Z)$ наборах Z + jets, которые используются для построения $Z + \gamma$ событий: $\sigma_Z^{\rm gen}$ – генераторное поперечное сечение для Z + jets, которые используются для построения $Z + \gamma$ событий: $\sigma_Z^{\rm gen}$ – генераторное поперечное сечение для Z + jets процесса, $N_Z^{\rm MC16a/d/e}$ – количество событий, удовлетворяющих отборам доверительной области для построения Z наборах Z + jets процесса, $N_Z^{\rm MC16a/d/e}$ – количество событий, удовлетворяющих отборам доверительной области для соответствующих объектов Z + jets процесса, $N_Z^{\rm MC16a/d/e}$ – количество событий, удовлетворяющих отборам доверительной области для соответствующих объектов Z + jets процесса, в каждой из кампании.

Обработка всех γ + jets событий требует значительных вычислительных ресурсов, поэтому статистика объёмных γ + jets наборов уменьшается до 100000 событий. Тем не менее сокращенная выборка является репрезентативной, как показано в приложении Д, и позволяет получить достоверные результаты.

Таблица 14 — Значения генераторного поперечного сечения и значения количества событий, удовлетворяющих отборам доверительной области для соответствующих объектов γ + jets процесса, в каждой из кампаний MC16a/d/e. BFilter пропускает только *b*-адроны, CFilterBVeto пропускает только *c*-адроны и накладывает вето на *b*-адроны, CVetoBVeto накладывает вето на *b* и *c*-адроны

$\gamma + jets$	$p_{\mathrm{T}}^{\gamma},\Gamma$ эВ	$\sigma_\gamma^{ m gen},$ нб	$\mathrm{N}_{\gamma}^{\mathrm{MC16a}}$	$\mathrm{N}_{\gamma}^{\mathrm{MC16d}}$	$\mathrm{N}_{\gamma}^{\mathrm{MC16e}}$
361045	140-280 CVetoBVeto	$2.4733 \cdot 10^{-1}$	5730863	7164490	9722954
361046	140-280 CFilterBVeto	$2.4730 \cdot 10^{-1}$	3531410	4412930	5989939
361047	140-280 BFilter	$2.4928 \cdot 10^{-1}$	3488508	4388563	5906211
361048	280-500 CVetoBVeto	$1.3636 \cdot 10^{-2}$	3473982	4338889	5899403
361049	280-500 CFilterBVeto	$1.3636 \cdot 10^{-2}$	1311955	1688373	2224485
361050	280-500 BFilter	$1.3871 \cdot 10^{-2}$	1564949	1983444	2557681
361051	500-1000 CVetoBVeto	$9.2491 \cdot 10^{-4}$	739530	923512	1255073
361052	500-1000 CFilterBVeto	$9.2369 \cdot 10^{-4}$	555049	695226	943402
361053	500-1000 BFilter	$9.4472 \cdot 10^{-4}$	110999	138837	193315
361054	1000-2000 CVetoBVeto	$1.8485 \cdot 10^{-5}$	480505	601956	816193
361055	1000-2000 CFilterBVeto	$1.8466 \cdot 10^{-5}$	240505	307718	413754
361056	1000-2000 BFilter	$1.8978 \cdot 10^{-5}$	67307	86534	115429

Вычисление весов пайлап событий на уровне генератора производится согласно формуле (5.10) для каждого γ +jets набора, скомбинированного с определенным Z + jets набором:

$$w_{Z+\gamma} = \frac{w_Z w_\gamma}{\langle w_Z \rangle \langle w_\gamma \rangle} \frac{L \sigma_{Z+\gamma}}{N_{\text{OMC}}},\tag{5.10}$$

где $w_{Z/\gamma}$, $\langle w_{Z/\gamma} \rangle$ – вес и средний вес события для Z + jets и γ + jets процессов соответственно, N_{OMC} – количество МКН событий. Поперечное сечение $\sigma_{Z+\gamma}$ для $Z(\nu\bar{\nu}) + \gamma$ событий вычисляется следующим образом:

$$\sigma_{Z+\gamma} = \langle \mu \rangle \frac{\sigma_Z^{\text{gen.}} \cdot \epsilon_Z \cdot \sigma_\gamma^{\text{gen.}} \cdot \epsilon_\gamma}{\sigma_{\text{inel}}}.$$
 (5.11)

Сечения Z + jets и γ + jets процессов в определенной области фазового пространства могут быть получены путем корректировки генераторных сечений σ_Z^{gen} и $\sigma_{\gamma}^{\text{gen}}$ на эффективности ϵ_Z и ϵ_{γ} соответственно. Эффективности $(\epsilon_Z \, \mathrm{u} \, \epsilon_{\gamma})$ вычисляются для каждого набора $(Z + \mathrm{jets} \, \mathrm{u} \, \gamma + \mathrm{jets})$ как отношение количества событий, отобранных согласно требованиям доверительной области фазового пространства к объектам соответствующих процессов, к общему количеству событий в наборе. Поперечное сечение неупругого взаимодействия σ_{inel} принимается равным 80 мб [43].

Таблица 15 — Значения генераторного поперечного сечения и значения количества событий, удовлетворяющих отборам доверительной области для соответствующих объектов Z + jets процесса, в каждой из кампаний MC16a/d/e

Z + jets	$p_{\mathrm{T}}^{Z},\Gamma$ эВ	$\sigma_Z^{ m gen},$ нб	$\mathbf{N}_Z^{\mathrm{MC16a}}$	$\mathbf{N}_Z^{\mathrm{MC16d}}$	$\mathbf{N}_Z^{\mathrm{MC16e}}$
364222	500-1000	$3.0440 \cdot 10^{-4}$	136217	103989	171221
364223	> 1000	$5.8558 \cdot 10^{-6}$	70715	70269	116466
366011	100-140 BFilter	$1.0910 \cdot 10^{-1}$	20	25	74
366012	100-140 BFilter	$4.5514 \cdot 10^{-3}$	76	82	233
366013	100-140 BFilter	$1.2029 \cdot 10^{-3}$	72	92	248
366014	140-280 BFilter	$5.1779 \cdot 10^{-2}$	3933	4913	13228
366015	140-280 BFilter	$4.4678 \cdot 10^{-3}$	1257	1457	4303
366016	140-280 BFilter	$1.3760 \cdot 10^{-3}$	688	801	2227
366017	280-500 BFilter	$4.2467 \cdot 10^{-3}$	6939	6946	22675
366020	100-140 CFilterBVeto	$1.0912 \cdot 10^{-1}$	20	22	32
366021	100-140 CFilterBVeto	$4.5539 \cdot 10^{-3}$	100	107	152
366022	100-140 CFilterBVeto	$1.2024 \cdot 10^{-3}$	115	113	163
366023	140-280 CFilterBVeto	$5.1774 \cdot 10^{-2}$	2965	3696	4833
366024	140-280 CFilterBVeto	$4.4680 \cdot 10^{-3}$	1576	1754	2682
366025	140-280 CFilterBVeto	$1.3755 \cdot 10^{-3}$	1461	1512	2352
366026	280-500 CFilterBVeto	$4.2483 \cdot 10^{-3}$	20247	25527	33481
366029	100-140 CVetoBVeto	$1.0914 \cdot 10^{-1}$	10	22	26
366030	100-140 CVetoBVeto	$4.5575 \cdot 10^{-3}$	72	80	111
366031	100-140 CVetoBVeto	$1.2022 \cdot 10^{-3}$	101	121	161
366032	140-280 CVetoBVeto	$5.1778 \cdot 10^{-2}$	19845	24856	33351
366033	140-280 CVetoBVeto	$4.4714 \cdot 10^{-3}$	3857	4764	6465
366034	140-280 CVetoBVeto	$1.3755 \cdot 10^{-3}$	3848	3858	6365
366035	280-500 CVetoBVeto	$4.2499 \cdot 10^{-3}$	25435	31390	42087

В таблице 16 приведены значения интегральной светимости L и среднего числа неупругих *pp*-столкновений $\langle \mu \rangle$ [44] для каждой кампании.

	MC16a	MC16d	MC16e
L, пб ⁻¹	36646.74	44630.6	58791.6
$\langle \mu \rangle$	25.1	37.8	36.1

Таблица 16 — Значения интегральной светимости L и среднего числа неупругих pp-столкновений $\langle \mu \rangle$ для каждой кампании

В таблице 17 приведены значения суммарного числа пайлап событий на уровне генератора, полученные путем комбинации каждого γ + jets набора последовательно с каждым Z + jets набором.

Таблица 17 — Значения суммарного числа пайлап событий на уровне генератора для каждого γ + jets набора, полученные путем последовательной комбинации с каждым Z + jets набором. В нижней строке приведены итоговые значения числа пайлап событий на уровне генератора в пределах MC16a/d/e кампании. Указанные погрешности – статистические

$\gamma + jets$	MC16a	MC16d	MC16e
361045	$(20.6 \pm 0.5) \cdot 10^{-2}$	$(38.8 \pm 0.8) \cdot 10^{-2}$	$(49.6 \pm 0.8) \cdot 10^{-2}$
361046	$(20.7 \pm 0.5) \cdot 10^{-2}$	$(39.0 \pm 0.8) \cdot 10^{-2}$	$(49.9 \pm 0.9) \cdot 10^{-2}$
361047	$(21.1 \pm 0.5) \cdot 10^{-2}$	$(39.7 \pm 0.8) \cdot 10^{-2}$	$(50.8 \pm 0.9) \cdot 10^{-2}$
361048	$(14.1 \pm 0.3) \cdot 10^{-3}$	$(26.4 \pm 0.5) \cdot 10^{-3}$	$(33.8 \pm 0.5) \cdot 10^{-3}$
361049	$(14.1 \pm 0.3) \cdot 10^{-3}$	$(26.5 \pm 0.5) \cdot 10^{-3}$	$(33.9 \pm 0.5) \cdot 10^{-3}$
361050	$14.3\pm 0.3)\cdot 10^{-3}$	$(26.9 \pm 0.5) \cdot 10^{-3}$	$(34.4 \pm 0.5) \cdot 10^{-3}$
361051	$(9.7 \pm 0.2) \cdot 10^{-4}$	$(18.2 \pm 0.3) \cdot 10^{-4}$	$(23.3 \pm 0.4) \cdot 10^{-4}$
361052	$(9.7 \pm 0.2) \cdot 10^{-4}$	$(18.3 \pm 0.3) \cdot 10^{-4}$	$(23.3 \pm 0.4) \cdot 10^{-4}$
361053	$(9.9\pm 0.2)\cdot 10^{-4}$	$(18.7 \pm 0.4) \cdot 10^{-4}$	$(23.8 \pm 0.4) \cdot 10^{-4}$
361054	$(19.9 \pm 0.4) \cdot 10^{-6}$	$(37.6 \pm 0.7) \cdot 10^{-6}$	$(48.1 \pm 0.8) \cdot 10^{-6}$
361055	$(20.0 \pm 0.4) \cdot 10^{-6}$	$(37.6 \pm 0.7) \cdot 10^{-6}$	$(48.0 \pm 0.8) \cdot 10^{-6}$
361056	$(20.5\pm0.5)\cdot10^{-6}$	$(38.6 \pm 0.8) \cdot 10^{-6}$	$(49.3\pm0.8)\cdot10^{-6}$
Интеграл	0.669 ± 0.008	1.261 ± 0.014	1.611 ± 0.015

5.2.2 Коррекционный фактор

К ожидаемому числу фоновых событий, обусловленных множественными *pp*-взаимодействиями, на уровне генератора применяется коррекционный фактор $C_{Z\gamma}$, для того чтобы получить оценку числа пайлап событий на уровне реконструкции. Коррекционный фактор, вычисляемый согласно формуле (5.12), учитывает потери сигнальных событий при переходе от уровня генератора к уровню реконструкции:

$$C_{Z\gamma} = \frac{N_{Z\gamma}^{\text{rec}}}{N_{Z\gamma}^{\text{gen}}},\tag{5.12}$$

где $N_{Z\gamma}^{\text{rec}}$ – количество сигнальных МК событий, удовлетворяющих отборам из таблицы 2 на уровне реконструкции, $N_{Z\gamma}^{\text{gen}}$ – количество сигнальных МК событий, удовлетворяющих отборам доверительной области на уровне генератора.

Так как общее число пайлап событий на уровне генератора вычисляется путем суммирования значений числа пайлап событий, вычисляемых для каждого γ + jets набора, $C_{Z\gamma}$ -фактор должен быть параметризован по поперечному импульсу фотона. В таблице 18 приведены значения коррекционного фактора для 4 интервалов по поперечному импульсу фотона $p_{\rm T}^{\gamma}$: [150; 280; 500; 1000; 2000] ГэВ.

Таблица 18 — Значения коррекционного фактора $C_{Z\gamma}$ в зависимости от поперечного импульса фотона для каждой кампании. В приложении Е приведены иллюстрации для $C_{Z\gamma}(p_{\rm T}^{\gamma})$

$p_{\mathrm{T}}^{\gamma},$ ГэВ	MC16a	MC16d	MC16e
150-280	$0.8685 {\pm} 0.0018$	$0.8155 {\pm} 0.0017$	$0.8246 {\pm} 0.0014$
280-500	$0.853 {\pm} 0.005$	$0.818 {\pm} 0.004$	$0.822 {\pm} 0.004$
500-1000	$0.841 {\pm} 0.015$	$0.803 {\pm} 0.014$	$0.829 {\pm} 0.012$
1000-2000	$0.80 {\pm} 0.08$	$0.84{\pm}0.11$	$0.73 {\pm} 0.06$

Число пайлап событий на уровне реконструкции вычисляется согласно формуле (5.13) путем умножения значений ожидаемого числа событий на уровне генератора из таблицы 17 на соответсвующий определенному значению $p_{\rm T}^{\gamma} C_{Z\gamma}$ -фактор:

$$N_{Z+\gamma}^{SR} = N_{Z+\gamma}^{FR} C_{Z\gamma}, \tag{5.13}$$

где $N_{Z+\gamma}^{\text{SR}}$, $N_{Z+\gamma}^{\text{FR}}$ – количество пайлап событий в области, которая задается отборами из раздела 3, и доверительной области соответственно. В таблице 19 приведены значения числа пайлап событий на уровне реконструкции в СО для каждой кампании.

Таблица 19 — Значения суммарного числа пайлап событий на уровне реконструкции в СО для каждого γ +jets набора. В нижней строке приведены итоговые значения числа пайлап событий на уровне реконструкции в СО в пределах MC16a/d/е кампании. Указанные погрешности – статистические

$\gamma + {\rm jets}$	MC16a	MC16d	MC16e
361045	$(17.9 \pm 0.4) \cdot 10^{-2}$	$(31.6 \pm 0.7) \cdot 10^{-2}$	$(40.9 \pm 0.7) \cdot 10^{-2}$
361046	$(18.0 \pm 0.4) \cdot 10^{-2}$	$(31.8 \pm 0.7) \cdot 10^{-2}$	$(41.1 \pm 0.7) \cdot 10^{-2}$
361047	$(18.3 \pm 0.4) \cdot 10^{-2}$	$(32.4 \pm 0.7) \cdot 10^{-2}$	$(41.9\pm0.7)\cdot10^{-2}$
361048	$(12.0 \pm 0.3) \cdot 10^{-3}$	$(21.6 \pm 0.4) \cdot 10^{-3}$	$(27.8 \pm 0.5) \cdot 10^{-3}$
361049	$(12.0 \pm 0.3) \cdot 10^{-3}$	$(21.7 \pm 0.4) \cdot 10^{-3}$	$(27.9\pm0.5)\cdot10^{-3}$
361050	$(12.2 \pm 0.3) \cdot 10^{-3}$	$(22.0 \pm 0.4) \cdot 10^{-3}$	$(28.3\pm0.5)\cdot10^{-3}$
361051	$(8.1\pm 0.2)\cdot 10^{-4}$	$(14.6 \pm 0.4) \cdot 10^{-4}$	$(19.4\pm0.4)\cdot10^{-4}$
361052	$(8.1\pm 0.2)\cdot 10^{-4}$	$(14.7 \pm 0.4) \cdot 10^{-4}$	$(19.4\pm0.4)\cdot10^{-4}$
361053	$(8.3\pm 0.2)\cdot 10^{-4}$	$(15.0 \pm 0.4) \cdot 10^{-4}$	$(19.7\pm0.4)\cdot10^{-4}$
361054	$(16.0 \pm 1.7) \cdot 10^{-6}$	$(3.2\pm0.4)\cdot10^{-5}$	$(3.5\pm0.3)\cdot10^{-5}$
361055	$(16.0 \pm 1.7) \cdot 10^{-6}$	$(3.2\pm 0.4)\cdot 10^{-5}$	$(3.5 \pm 0.3) \cdot 10^{-5}$
361056	$(16.5 \pm 1.7) \cdot 10^{-6}$	$(3.3\pm 0.4)\cdot 10^{-5}$	$(3.6 \pm 0.3) \cdot 10^{-5}$
Интеграл	$0.581{\pm}0.007$	1.028 ± 0.011	1.329 ± 0.012

Результирующее число фоновых событий, обусловленных множественными *pp*-столкновениями, в СО составляет 2.938 ± 0.018 (стат.) события. Значение доли пайлап событий по отношению к данным составляет (0.01257 ± 0.00011) %. Указанная погрешность – статистическая.

К компонентам статистической погрешности относятся:

- погрешности на веса w_{γ} и w_Z событий, участвующих в комбинации γ + jets наборов с Z + jets наборами;
- погрешность на коррекционный фактор $C_{Z\gamma}$;
- погрешности на эффективности ϵ_Z и ϵ_γ , которые корректируют $\sigma_Z^{\text{gen.}}$ and $\sigma_\gamma^{\text{gen.}}$ соответственно.

Для получения полной статистической погрешности значения, перечисленных выше компонент, суммируются в квадратуре. Общая относительная статистическая погрешность составляет 0.6%.

5.2.3 Источники систематической погрешностей

Систематическая погрешность обусловлена теоретическими погрешностями на сечения Z + jets и γ + jets процессов, экспериментальной погрешностью на коррекционный фактор $C_{Z\gamma}$, а также погрешностью на интегральную светимость L.

Вклад в теоретическую погрешность вносят:

- погрешность, обусловленная выбором функции распределения плотности партонов (ФРП) [45]. Погрешность на ФРП вычисляется с помощью MadGraph. Наибольшие отклонения составляют 1.3% и 1.5% для Z + jets и γ + jets процессов соответственно;
- погрешность, обусловленная выбором масштаба перенормировки и факторизации. Погрешность на масштаб вычисляется с помощью генератора MadGraph путем варьирования номинального значения масштаба на фактор 0.5 и 2. Наибольшее отклонение одинаково для Z + jets и γ + jets процессов и составляет 11.2%.

Теоретические погрешности на сечения от компонент Z + jets и γ + jets вносят одинаковый вклад в общую теоретическую погрешность, и зависят от одинаковых параметров. Ввиду этого данные ошибки рассматриваются как жестко коррелированные и суммируются аддитивно. Результирующая теоретическая погрешность составляет 22.5%.

Экспериментальная погрешность на коррекционный фактор включает: погрешности на эффективности идентификации, изоляции и реконструкции объектов, а также погрешность на эффективность триггера; погрешности на энергетическую шкалу и разрешение для электронов, фотонов и адронных струй, а также на импульсную шкалу и разрешение для мюонов и потерянного поперечного импульса. Кроме того, в систематическую погрешность на $C_{Z\gamma}$ -фактор вносит вклад ошибка моделирования, обусловленная выбором МК генератора. Итоговая систематическая погрешность на коррекционный фактор $C_{Z\gamma}$ содержит только преобладающие компоненты (> 0.1%) и принимается равной 3.5% согласно $Z\gamma \rightarrow \nu \bar{\nu}\gamma$ анализу [46]. Погрешности на интегральную светимость составляют 2.1%, 2.4% и 2.0% [47] для MC16a, MC16d и MC16e кампаний соответственно. Необходимо принять во внимание, что отношение $\langle \mu \rangle / \sigma_{inel}$, фигурирующее в формуле для вычисления пайлап событий, пропорционально L. Общее число неупругих столкновений может быть записано как $N_{inel} = L\sigma_{inel}$, с другой стороны $N_{inel} = \langle \mu \rangle N_{bc}$, где N_{bc} – общее число сталкивающихся пучков. Изза равенства $\langle \mu \rangle / \sigma_{inel} = L/N_{bc}$ значение числа пайлап событий квадратично зависит от интегральной светимости. Таким образом, систематическая погрешность числа фоновых событий, обусловленных множественными ppвзаимодействиями, на интегральную светимость учитывается с фактором 2 и составляет 2.7%.

В таблице 20 обобщены источники систематической погрешности и их относительный вклад в итоговое число пайлап событий.

В результате оценка числа пайлап событий в CO с учетом статистической и систематической погрешностей составляет 2.938 ± 0.018 (стат.) ± 0.674 (сист.) событий. Значение доли пайлап событий по отношению к данным составляет $(0.013 \pm 0.003$ (стат. \oplus сист.))%.

Таблица 20 — Относительные систематические погрешности для числа фоновых событий, обусловленных множественными pp-взаимодействиями

Источник систематической погрешности	Отн. отклонение
ФРП \oplus масштаб	22.5%
$C_{Z\gamma}$	3.5%
L	2.7%
Итоговая систематическая погрешность	22.9%

Результат, полученный с помощью метода МКН, позволяет подтвердить, что вклад пайлап фона в число событий СО незначителен. Таким образом, пайлап фон не оказывает влияния на форму распределения сигнала в данных СО и может быть учтен в качестве дополнительной нормировочной систематической погрешности при получении сечения $Z(\nu\nu)\gamma$ процесса.

ЗАКЛЮЧЕНИЕ

Цель работы заключалась в оценке фона jet $\rightarrow \gamma$, обусловленного неверной идентификацией адронной струи как фотона, а также в оценке фона, обусловленного множественными *pp*-взаимодействиями, в процессе ассоциированного рождения *Z*-бозона с фотоном. В соответствии с поставленными задачами в результате данной работы:

- адаптирован метод интервалов оценки фоновых jet → γ событий и получена оценка количества таких событий в сигнальной области, значение которой составило N^{jet→γ}_{SR} = 2080 ± 60(стат.) ± 150(сист.) событий, относительная погрешность δ = 8%. Результат в пределах погрешности согласуется со значением, полученным ABCD методом;
- разработан матричный метод оценки фоновых jet → γ событий и получена оценка количества таких событий в сигнальной области, значение которой составило N^{jet→γ}_{SR} = 1900 ± 200(стат.) ± 400(сист.) событий, относительная погрешность δ = 24%. Результат совпадает в пределах погрешности с оценками ABCD метода и метода интервалов;
- ввиду выявленных недостатков метода оценки пайлап фона, основанного на данных с использованием нормировочных коэффициентов, разработан альтернативный метод на данных. Значение оценки доли пайлап событий по отношению к данным с конверсионными фотонами, вычисленная в области $|\Delta z| > 50$ мм, составило $f_{\rm PU}^{|\Delta z|>50 \text{ mm}} = (-6 \pm 2(\text{стат.}))\%$. Также получена оценка доли пайлап событий по отношению к данным с конверсионными фотонами, вычисленная в области $|\Delta z| > 50$ мм, составило $f_{\rm PU}^{|\Delta z|>50 \text{ mm}} = (-6 \pm 2(\text{стат.}))\%$. Также получена оценка доли пайлап событий по отношению к данным с конверсионными фотонами, вычисленная в области $|\Delta z| > 15$ мм, значение которой составило $f_{\rm PU}^{|\Delta z|>15 \text{ mm}} = (-2.7 \pm 1.5(\text{стат.}))\%$. На основе полученных результатов установлено, что вклад пайлап фона в число событий сигнальной области с конверсионными фотонами незначителен;
- ввиду низкой точности метод, основанный на данных, может использоваться только для проверки и подтверждения результата, полученного альтернативным методом оценки исследуемого фона – методом

Монте-Карло наложений. Оценка количества пайлап событий в сигнальной области МКН методом составила $N_{\rm PU} = 2.938 \pm 0.018 ({\rm crar.}) \pm 0.674 ({\rm cucr.})$ события. Значение доли пайлап событий по отношению к данным составило $(0.013 \pm 0.003 ({\rm crar.} \oplus {\rm cucr.}))\%$.

В результате оценка количества jet $\rightarrow \gamma$ событий в сигнальной области, полученная с помощью методов на данных, имеет значительно меньшую погрешность, чем оценка, предсказываемая MK, что впоследствии повлияет на точность измерения сечения процесса $Z(\nu\nu)\gamma$. Кроме этого, рассмотренные методы оценки jet $\rightarrow \gamma$ фона имееют ряд преимуществ перед ABCD методом.

Также на основе реализованного альтернативного подхода оценки количества пайлап событий, основанного на МК, установлено, что вклад пайлап фона в число событий СО незначителен. Таким образом, пайлап фон не оказывает влияния на формы распределений и может быть учтен в качестве дополнительной нормировочной систематической погрешности при получении сечения $Z(\nu\nu)\gamma$ процесса.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Емельянов В.* Стандартная модель и ее расширения. ЛитРес, 2022. С. 584.
- Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC / G. Aad [et al.] // Phys. Lett. B. — 2012. — Vol. 716. — P. 1–29. — arXiv: 1207.7214 [hep-ex].
- Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC / S. Chatrchyan [et al.] // Phys. Lett. B. 2012. Vol. 716. P. 30–61. arXiv: 1207.7235 [hep-ex].
- 4. Krasnov K., Percacci R. Gravity and unification: a review // Class. Quantum Gravity. — 2018. — Vol. 35, no. 14. — P. 143001.
- Bertone G., Hooper D., Silk J. Particle dark matter: Evidence, candidates and constraints // Phys. Rept. — 2005. — Vol. 405. — P. 279– 390. — arXiv: hep-ph/0404175.
- Evidence for Oscillation of Atmospheric Neutrinos / Y. Fukuda [et al.] // Phys. Rev. Lett. — 1998. — Vol. 81, issue 8. — P. 1562–1567.
- Gildener E. Gauge-symmetry hierarchies // Phys. Rev. D. 1976. Vol. 14, issue 6. — P. 1667–1672.
- Canetti L., Drewes M., Shaposhnikov M. Matter and Antimatter in the Universe // New J. Phys. — 2012. — Vol. 14. — P. 095012. — arXiv: 1204.4186 [hep-ph].
- A Combination of preliminary electroweak measurements and constraints on the standard model / J. Alcaraz [et al.]. — 2006. — arXiv: hep-ex/0612034.
- 10. Study of triple-gauge-boson couplings $ZZZ, ZZ\gamma$ and $Z\gamma\gamma$ at LEP / J. Abdallah [et al.] // Eur. Phys. J. C. — 2007. — Vol. 51, no. 3. — P. 525–542.

- 11. Search for trilinear neutral gauge boson couplings in $Z\gamma$ production at $\sqrt{s} = 189$ GeV at LEP / G. Abbiendi [et al.] // Eur. Phys. J. C. 2000. Vol. 17, no. 4. P. 553–566.
- 12. Study of the $ee \rightarrow Z\gamma$ process at LEP and limits on triple neutral-gaugeboson couplings / P. Achard [et al.] // Phys. Lett. B. — 2004. — Vol. 597, no. 2. — P. 119–130.
- 13. Limits on Anomalous Trilinear Gauge Couplings in $Z\gamma$ Events from $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV / T. Aaltonen [et al.] // Phys. Rev. Lett. — 2011. — Vol. 107, issue 5. — P. 051802.
- 14. Search for ZZ and $Z\gamma^*$ Production in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV and Limits on Anomalous ZZZ and ZZ γ Couplings / V. M. Abazov [et al.] // Phys. Rev. Lett. 2008. Vol. 100, issue 13. P. 131801.
- 15. $Z\gamma$ production and limits on anomalous $ZZ\gamma$ and $Z\gamma\gamma$ couplings in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV / V. M. Abazov [et al.] // Phys. Rev. D. -2012. Vol. 85, issue 5. P. 052001.
- 16. Measurements of $Z\gamma$ and $Z\gamma\gamma$ production in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector / G. Aad [et al.] // Phys. Rev. D. 2016. Vol. 93, no. 11. P. 112002. arXiv: 1604.05232 [hep-ex].
- 17. Measurement of the production cross section for $Z\gamma \rightarrow \nu \overline{\nu} \gamma$ in pp collisions at $\sqrt{s} = 7$ TeV and limits on $ZZ\gamma$ and $Z\gamma\gamma$ triple gauge boson couplings / S. Chatrchyan [et al.] // J. High Energy Phys. 2013. Vol. 2013, no. 10.
- 18. Measurement of the $Z\gamma \rightarrow \nu \bar{\nu} \gamma$ production cross section in pp collisions at $\sqrt{s} = 8$ TeV and limits on anomalous $ZZ\gamma$ and $Z\gamma\gamma$ trilinear gauge boson couplings / V. Khachatryan [et al.] // Phys. Lett. B. — 2016. — Vol. 760. — P. 448–468.
- Okun L. B. Leptons and Quarks: Special Edition Commemorating the Discovery of the Higgs Boson. — Amsterdam, Netherlands : North-Holland, 1982. — ISBN 978-981-4603-14-0, 978-981-4603-00-3, 978-0-444-86924-1.

- Peskin M. E., Schroeder D. V. An Introduction to quantum field theory. — Reading, USA : Addison-Wesley, 1995. — ISBN 978-0-201-50397-5.
- Gross D. J., Wilczek F. Asymptotically Free Gauge Theories I // Phys. Rev. D. — 1973. — Vol. 8. — P. 3633–3652.
- Higgs P. W. Broken Symmetries and the Masses of Gauge Bosons // Phys. Rev. Lett. — 1964. — Vol. 13, issue 16. — P. 508–509.
- Higgs P. W. Spontaneous Symmetry Breakdown without Massless Bosons // Phys. Rev. — 1966. — Vol. 145, issue 4. — P. 1156–1163.
- 24. Evans L., Bryant P. LHC Machine // J. Instrum. 2008. Vol. 3, no. 08. S08001.
- ATLAS Collaboration. The performance of ATLAS detector. Heidelberg : Springer, 2011. — Reprinted from Eur. Phys. J. C (articles published between summer 2010 and spring 2011).
- 26. The ATLAS Experiment at the CERN Large Hadron Collider / G. Aad [et al.] // J. Instrum. — 2008. — Vol. 3, no. 08. — S08003.
- 27. The performance of missing transverse momentum reconstruction and its significance with the ATLAS detector using 140 fb⁻¹ of $\sqrt{s} = 13$ TeV pp collisions / G. Aad [et al.]. 2024. arXiv: 2402.05858 [hep-ex].
- Event generation with SHERPA 1.1 / T. Gleisberg [et al.] // J. High Energy Phys. — 2009. — Vol. 2009, no. 02. — P. 007–007.
- 29. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations / J. Alwall [et al.] // J. High Energy Phys. 2014. Vol. 07. P. 079. arXiv: 1405.0301 [hep-ph].
- Frixione S., Nason P., Oleari C. Matching NLO QCD computations with Parton Shower simulations: the POWHEG method // J. High Energy Phys. — 2007. — Vol. 11. — P. 070. — arXiv: 0709.2092 [hep-ph].
- An introduction to PYTHIA 8.2 / T. Sjöstrand [et al.] // Comput. Phys. Commun. — 2015. — Vol. 191. — P. 159–177.

- 32. Herwig 7.0/Herwig++ 3.0 release note / J. Bellm [et al.] // Eur. Phys.
 J. C. 2016. Vol. 76, no. 4.
- Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data / G. Aad [et al.] // J. Instrum. 2019. Vol. 14, no. 12. P12006. arXiv: 1908.00005.
- 34. ATLAS TWiki [Электронный ресурс]. URL: https://twiki.cern. ch/twiki/bin/view/AtlasProtected/IsolationSelectionTool.
- 35. Marshall Z. Simulation of Pile-up in the ATLAS Experiment // J. Phys. Conf. Ser. / ed. by D. L. Groep, D. Bonacorsi. 2014. Vol. 513. P. 022024.
- Object-based missing transverse momentum significance in the ATLAS detector : tech. rep. / CERN. Geneva, 2018.
- 37. Longarini I. Beam-induced background identification with image vision techniques at ATLAS // Nuovo Cimento C. 2021. Vol. 44, no. 2/3. P. 53.
- 38. Likelihood-Based Approach to the Estimation of the Background Induced by the Misidentification of a Jet as a Photon at pp Collider Experiment / K. Kazakova [et al.] // Phys. Part. Nucl. Lett. — 2023. — Vol. 20, no. 5. — P. 1194–1197.
- 39. Automating the ABCD method with machine learning / G. Kasieczka [et al.] // Phys. Rev. D. 2021. Vol. 103, issue 3. P. 035021.
- 40. TRExFitter documentation [Электронный pecypc]. URL: https:// trexfitter-docs.web.cern.ch/trexfitter-docs.
- 41. Verkerke W., Kirkby D. The RooFit toolkit for data modeling. 2003. arXiv: physics/0306116 [physics.data-an].
- 42. Measurement of the $Z\gamma$ cross-section in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector : tech. rep. / Y. C. Yap [et al.]; CERN. Geneva, 2018.
- 43. Stark S. H. Measurements of the elastic, inelastic and total pp cross sections with the ATLAS, CMS and TOTEM detectors // EPJ Web Conf. / ed. by I. K. Yoo. — 2017. — Vol. 141. — P. 03007.

- 44. ATLAS TWiki [Электронный pecypc]. URL: https://twiki.cern. ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2# 2018_pp_Collisions.
- 45. PDF4LHC recommendations for LHC Run II / J. Butterworth [et al.] //
 J. Phys. G. 2016. Vol. 43, no. 2. P. 023001.
- 46. Measurement of the $Z\gamma \rightarrow \nu \bar{\nu} \gamma$ Production Cross Section in pp Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector and Limits on Anomalous Triple Gauge Couplings : tech. rep. / D. Koshelenko [et al.]; CERN. Geneva, 2018.
- 47. ATLAS Collaboration. Luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector at the LHC. 2019.
Распределения по различным переменным до нормировки событий jet $\rightarrow \gamma$ в методе интервалов

Рисунок 21 — Распределения количества событий по соответствующим переменным: $E_{\rm T}^{\rm miss}$ (a), значимость $E_{\rm T}^{\rm miss}$ (б), $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \gamma)|$ (в) и $|\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j_1)|$ (г) в данных, сигнальном процессе, фоновых процессах, за исключением оцениваемого фона, в KO3, а также количества jet $\rightarrow \gamma$ событий для 1-ого интервала в KO1 до процедуры нормировки в KO3

Экстраполяция в СО количества jet → γ событий различными функциями в матричном методе

Рисунок 22 — Экстраполяция в СО количества jet $\rightarrow \gamma$ событий полиномом второй степени (а), полиномом третьей степени (б) и экспоненциальной функцией (в) из КО, разделенной на 8 интервалов

Экстраполяция в СО количества jet $\rightarrow \gamma$ событий для различного числа интервалов в КО в матричном методе

Рисунок 23 — Экстраполяция в СО количества jet
— γ событий для 8 (a), 9 (б) и 10 (в) интервалов в КО

Распределения по переменной Δz для событий с отбором по числу струй

Рисунок 24 — Распределения данных и МК сигнала, отнормированого на SF₁, по переменной Δz для событий с конверсионными фотонами в CO с отбором по числу струй: $N_{\rm jets} \ge 0$ (a), $N_{\rm jets} > 0$ (б), $N_{\rm jets} > 1$ (в) и $N_{\rm jets} = 0$ (г)

Д

Репрезентативность γ + jets выборки

Д.1.Распределение γ + jets событий

Рисунок 25 — Распределение количества событий, прошедших отборы ДО для соответствующих объектов из 361045 γ + jets набора, для MC16a (a), MC16d (б) и MC16e (в)

Д.2.Распределение γ + jets событий с уменьшенной статистикой

Рисунок 26 — Распределение 100000 событий, прошедших отборы ДО для соответствующих объектов из 361045 γ + jets набора, для MC16a (a), MC16d (б) и MC16e (в)

Коррекционный фактор

Рисунок 27 — Коррекционный фактор, параметризованный по поперечному импульсу фотона $p_{\rm T}^\gamma,$ для MC16a (a), MC16d (б) и MC16e (в)