

Система обеспечения однородности отклика детекторов в 32-канальной ПЭТ системе

Студент: Конотоп Алексей Давидович, студент группы Б20-102 кафедры №40 «Физика элементарных частиц и космология» ИЯФиТ НИЯУ МИФИ, лаборант-исследователь ЛФРП ОФН НИЦ «Курчатовский институт»

Научный руководитель: Мачулин Игорь Николаевич, старший преподаватель кафедры №40 «Физика элементарных частиц и космология», старший научный сотрудник ЛФРП ОФН НИЦ «Курчатовский институт»

Научный консультант: Дубинин Филипп Андреевич, старший преподаватель кафедры №40 «Физика элементарных частиц и космология», лаборант-исследователь ЛФРП ОФН НИЦ «Курчатовский институт»

Принципы ПЭТ-сканирования

- Радиоактивный распад
- Аннигиляция позитрона, рождение двух гамма-квантов
- Детектирование гамма-квантов
- Восстановление изображения

Позитронный распад и аннигиляция пэн изотоп с β^+ распадом позитрон электрон электрон γ -квант γ -кв

Фтордизоксиглюкоза (FDG)

FDG является наиболее часто используемым радиофармпрепаратом в ПЭТ-визуализации. Он содержит радиоактивный изотоп F-18 и имитирует глюкозу. Из-за высокого потребления глюкозы раковыми клетками и некоторыми другими активными тканями, FDG-ПЭТ широко используется для диагностики, определения стадии и мониторинга рака.

Радионуклид	Полураспад	Тип распада	Е _{тах} , МэВ
¹¹ C	20,4 мин	β+(100)	0,970
¹³ N	10 мин	β+(100)	1,2
¹⁵ O	2 мин	β+(100)	1,74
¹⁸ F	110 мин	β+(97)	0,64
⁶⁸ Ga	68 мин	β+(89)	1,9
⁸² Rb	72 c	β+(95)	3,25
¹²⁴	4,2 дней	β+(23)	2,14

Макет ПЭТ

Материалы детекторов

	LYSO(Ce)	BGO	Nal(Ti)	GAGG(Ce)
Плотность, г/см²	7.1	7.13	3.67	6.63
$Z_{\rm eff}$	63	73	50	54.4
λ _{max} , нм	420	480	415	520
t, нс	40	300	230	87(90%) 255(10%)
Световыход, фотон/кэВ	30	10	38	46
Гигроскопичность	Нет	Нет	Да	Нет
Радиоактивность	Да	Нет	Нет	Нет

Неорганические сцинтилляторы GAGG(Ce) 3x3x20 мм

Фотоприёмник: SiPM Onsemi FC30035

Напряжение пробоя $V_{br} = 24.2 - 24.7 B$

При длине волны 520 нм и перенапряжении 3 В:

Эффективность регистрации (PDE) = 17%

Усиление = 3 x 10⁶

Petiroc 2A

- Электроника на 32 канала
- Каждый канал два тракта
 - Измерение времени
 - Измерение заряда
- Срабатывание одного канала вызывает запись информации со всех каналов
- Возможность подстройки усиления по зарядовому тракту

Характеристики модели ПЭТ

Лучшее энергетическое разрешение (511 кэВ) - 14 % Лучшее ЭР одиночного детектора (662 кэВ) - 8% Временное разрешение - 1.80 ± 0.07 нс (одиночный)

Неоднородность установки

Ср. положение фотопика = 318 канал АЦП Разброс значений = 20%

Вывод: необходимо разобраться в причинах и минимизировать разброс

Установка для изучения неоднородности отклика

Результаты измерений

Разброс значений энергетического разрешения = 4%

Разброс значений положения фотопика = 9%

Вывод: помимо оптического контакта, неоднородность вносят различия световыходов сцинтилляторов, а также SiPM имеют разное напряжение пробоя

Со сцинтилляторами мы ничего сделать не можем, но управлять перенапряжением SiPM возможно

Подстройка напряжений на SiPM

Резистивный делитель

- простота исполнения
- надёжность
- компактность

- узкий диапазон подстройки
- дополнительный высокоомный резистор в цепи питания
- отсутствие обратной связи
- грубая настройка

Дифференциальный каскад

- высокая линейность
- широкий диапазон подстройки
- устойчивость к помехам
- более точная подстройка
- возможность программного управления
- возможность обратной связи

- необходим источник опорного напряжения
- громоздкость
- стоимость

Резистивный делитель

- 1. Амплитуда линейно зависит от напряжения
- 2. Зависимость энергетического разрешения (ЭР) от напряжения имеет минимум (оптимальный режим работы SiPM при V = 29.5 B)
- 3. Применение схемы не ухудшает ЭР

Зависимость положения пика от напряжения смещения

Зависимость энергетического разрешения от напряжения смещения

Дифференциальный каскад

Напряжение на выходе от напряжения на ЦАП

Дифференциальный каскад. Результаты.

5.5%

26

26.5

27

27.5

- 1. Наблюдается линейность положений пика
- 2. Значительно больший диапазон регулирования
- 3. Зависимость ЭР от напряжения имеет минимум (оптимальный режим работы SiPM при V = 29.0 B); в данных измерениях температура была повышена на 7 °C

28

Напряжение смещения, В

28.5

29

30

29.5

Общие результаты подстройки. Пути улучшения.

Схемы подстройки напряжения не ухудшают энергетическое разрешение каналов!

Модель в Geant4

- Получение референсных изображений для проверки неоднородностей
- Тестирование различных неорганических сцинтилляторов
- Отработка большего числа каналов
- Быстрый набор большой статистики
- Отработка алгоритмов формирования синограмм и восстановления изображений

Модель ПЭТ на 32 канала

Генерация аннигиляционных гамма-квантов проводилась в плоскости

Синограмма

Выборка:

Е = 511 кэВ

Радиус

Построение синограммы

Угол Синограмма из модели ПЭТ на 32 канала

Восстановленное изображение

Для восстановления использован пакет MATLAB и встроенная функция iradon()

iradon()

На вход подаётся синограмма в виде изображения и применяется обратное преобразование радона

Изображение из реальных данных

Изображение из моделирования

Моделирование различных сцинтилляторов

GAGG(Ce)

используем в нашей установке, генерирование референсных изображений

BGO LYSO(Ce) исторически используются, высокая плотность и зарядовое число

Анализ восстановленного изображения

Уширение связано с геометрическими искажениями восстановления и требует модификации алгоритма восстановления

Положение	GAGG(Ce)	LYSO(Ce)	BGO
источника, мм	Eff., %	Eff, %	Eff, %
0	2.1	7.6	11.8
10	1.4	5.2	8.2
20	1.7	6.4	10.2

Эффективность установки на 64 канала

Заключение

- Изучены характеристики макета: энергетическое разрешение и положение фотопика на всех каналах при постоянном напряжении 28 В. разброс по фотопику 20%; энергетическое разрешение 15% (от 12% до 16%)
- Создана установка для изучения неоднородности отклика
- Показано: разброс обусловлен различиями сцинтилляторов, разбросом напряжений пробоя SiPM, оптическим контактом
- Для снижения неоднородности созданы две схемы подстройки напряжений
- Обе схемы имеют высокую стабильность, схема на дифференциальном каскаде имеет потенциал модернизации (внедрение цифрового управления)
- Создана модель кольца ПЭТ, повторяющая геометрию установки
- Получены референсные изображения, идентичные построенным при помощи данных с реальной установки
- Показано, что кристаллы BGO имеют лучшую эффективность по фотопику среди рассмотренных сцинтилляторов

СПАСИБО ЗА ВНИМАНИЕ!

По вопросам обращаться: Конотоп Алексей Давидович, +7(964)522-06-69 akonotop03@mail.ru

Моделирование на 64 канала

Вход Выход Backup 4 Модуль Плата ИП подстройки детектора GND +5B GND -5B GND GND GND X8 To SiPM KT814 _____VT2 0..30V X1 GND +5B GND -5B X2 PWR1 R6 \\\\\\ +5V X3 KT315 VT1 R3 100 PWR9 9 VT4 KT315 PWR2 GND → PWR3 PWR7 Х9 VT3 GŃD PWR6 PWR8 ′к⊓303 PWR4 -5V X6 GND X7 PWR5

