

Национальный исследовательский ядерный университет «МИФИ»

Кафедра физики элементарных частиц №40

Выпускная квалификационная работа студента на тему:

Система для регистрации аннигиляционных гамма-квантов на основе сцинтилляторов GAGG в сочетании с матрицами кремниевых фотоумножителей

Научный руководитель:

Тетерин П. Е.

Научный консультант:

Дубинин Ф. А.

Студентка 2 курса:

Журкина А. О.

Введение

Позитронно-эмиссионная томография - эффективный и современный метод диагностики онкологических заболеваний.

В современных ПЭТ-сканерах для регистрации аннигиляционных гамма-квантов от радиофармпрепарата, вводимого пациенту, используются тысячи сцинтилляционных элементов, от размера которых зависит пространственное разрешение и, в конечном итоге, четкость изображения изучаемого органа.

Рисунок 1 – ПЭТ-сканер для исследования внутренних органов маленьких животных

Применение монолитных сцинтилляторов и матриц SiPM в ПЭТ

Альтернативой большому количеству элементов ПЭТ является использование кристаллических пластин (monolithic detectors) с матрицами кремниевых фотоумножителей в качестве фотодетекторов.

Рисунок 2 – Принципиальная схема ПЭТ

Цель

 Изучить характеристик позиционно-чувствительных детекторов на основе монолитных кристаллов GAGG и матриц кремниевых фотоэлектронных умножителей

Поставленные задачи

- Оценить разброс коэффициентов усиления ячеек матриц SiPM
- Разработать алгоритм для определения напряжений пробоя ячеек матриц SiPM
- Оценить энергетическое и временное разрешений детектора
- Разработать алгоритм для восстановления координаты ХҮвзаимодействия
- Оценить загрузки детектора

Исследуемые детекторы

Матрица SiPM SensL SPMArray4

Матрица SiPM Onsemi ARRAYJ-30035-16P

Размерность матрицы: 4 х 4 Общая эффективная площадь матрицы: 13,4 х 13,4 мм

Размерность матрицы: 4 х 4 Общая эффективная площадь матрицы: 12,64 х 12,64 мм Матрица SiPM Hamamatsu S13361-3050AE-08

•	•		•	•
			•	-
•			•	
			•	-

Размерность матрицы: 8 x 8 Общая эффективная площадь матрицы: 24 x 24 мм

Многопиксельный сцинтиллятор LYSO и монолитный сцинтиллятор GAGG

Характеристики сцинтилляторов GAGG и LYSO:

Параметр	GAGG	LYSO
$\mathrm{Z}_{\mathrm{s}\mathrm{d}\mathrm{d}\mathrm{d}}$	51	63
Π лотность, г/см 3	6,6	7,1
Время затухания, нс	30–100	41
Энергетичсекое разрешение (662 кэВ), %	6	7
Длина волны (макс. эмиссия), нм	520	420
Гигроскопичность	-	-
Собственная радиоактивность	-	+
Световыход (фотонов/кэВ)	35 - 55	30

Многоканальная электроника

Petiroc 2A - 32-канальный ASIC (application-specific integrated circuit, "интегральная схема для конкретного применения"), предназначенный для считывания данных с кремниевых фотоумножителей (SiPM).

Petiroc 2A сочетает в себе возможность точных измерений заряда и времени. Заряд и время оцифровываются внутри прибора с помощью 10-битных АЦП и ВЦП.

Многоканальная считывающая система CAEN FERS-5200 (DT-5202) на основе двух чипов Citiroc-1A сочетает в себе собственное питание, фронт-энд электронику, АЦП, триггерную логику, синхронизацию, локальную память и интерфейс считывания.

Установка для измерения коэффициентов усиления SiPM

- 1. Монолитные сцинтилляционные кристаллы GAGG(Ce) 12x12x12 мм;
- 2. матрицы SiPM 4x4 Onsemi ARRAYJ-30035-16P;
- 3. считывающие платы AiT Instruments AB16VB-ARRAYJ16P на 16 каналов;
- 4. источник питания (х2);
- 5. считывающая плата на основе чипа Petiroc-2A.

Рисунок 3 – Принципиальная схема установки для измерения коэффициентов усиления SiPM

Оценка разброса коэффициентов усиления SiPM

Рисунок 4 – Одноэлектронный зарядовый спектр 0-го канала матрицы

Рисунок 5 – График зависимости коэффициентов усиления от номеров каналов матриц

Максимальный разброс относительно среднего для первой матрицы составил 0,98 ± 0,07, для второй – 0,55 ± 0,05

Установка для определения напряжений пробоя SiPM

- 1. Матрица SiPM 8x8 Hamamatsu S13361-3050AE-08;
- считывающая плата А5251 на 64 канала для обеспечения усиления сигналов с матрицы;
- считывающая система CAEN FERS-5200 (DT-5202) на основе двух чипов Citiroc-1A;
- 4. CAEN SP5601 LED driver.

Рисунок 6 – Принципиальная схема установки для определения напряжений пробоя SiPM

Измерение напряжений пробоя SiPM

Found peaks:

Рисунок 7 – Одноэлектронный спектр с первого канала матрицы и результат работы программы по нахождению пиков и вычислению их положений

Уравнение прямой: у = 18.00х + -945.00 Напряжение пробоя: х = 52.50 В

Рисунок 8 – Результат работы программы по определению напряжения пробоя канала матрицы

^{{&#}x27;Ch_01': [523.0, 442.0, 352.0, 271.0, 190.0, 145.0]} Gain: 81.0

Результат измерений напряжений пробоя

Напряжения пробоя для 64 каналов матрицы Hamamatsu S13361-3050AE-08:

Ch	V_{br},V	Ch	V_{br},V	Ch	V_{br}, V	Ch	V_{br},V
0	49.7	16	54.7	32	51.1	48	55.2
1	52.5	17	53.6	33	47.7	49	50.0
2	53.9	18	50.9	34	49.0	50	55.2
3	50.9	19	54.9	35	52.2	51	52.1
4	52.9	20	49.9	36	52.3	52	55.2
5	54.5	21	55.0	37	52.8	53	50.0
6	51.7	22	48.0	38	51.7	54	54.6
7	49.7	23	54.6	39	48.0	55	49.5
8	50.6	24	52.4	40	53.5	56	51.3
9	53.6	25	49.5	41	51.9	57	52.3
10	49.6	26	52.7	42	54.1	58	49.5
11	51.6	27	54.3	43	52.0	59	52.5
12	52.8	28	52.4	44	46.3	60	51.4
13	56.0	29	52.1	45	51.9	61	55.4
14	54.4	30	52.3	46	54.3	62	50.7
15	55.1	31	52.6	47	52.3	63	52.0

Разброс по напряжениям составляет 7,7 В

Разработанный алгоритм позволяет:

- 1. определять коэффициент усиления и напряжение пробоя SiPM;
- 2. помогает обеспечить однородный отклик со всех каналов матрицы;
- 3. является методом контроля стабильности детектора.

Оценка энергетического разрешения

- 1. Монолитный сцинтилляционный кристалл GAGG(Ce) 15х12х10 мм;
- 2. матрица SiPM 4x4 (SensL SPMArray4);
- 3. считывающая плата на 16 каналов;
- 4. источник питания (x2);
- 5. осциллограф.

Рисунок 9 – Принципиальная схема установки для измерения энергетического разрешения

Относительное разрешение (662 кэВ): δ ~ 14% Собственное разрешение (662 кэВ): δ ~ 6%

Cs-137 Spectrum

Установка для оценки энергетического разрешения и восстановления координаты XY – взаимодействия

- 1. Монолитный сцинтилляционный кристалл GAGG(Ce) 12x12x12 мм;
- 2. матрица SiPM 4x4 Onsemi ARRAYJ-30035-16P;
- 3. считывающая платы AiT Instruments AB16VB-ARRAYJ16P на 16 каналов;
- 4. источник питания (х2);
- 5. считывающая плата на основе чипа Petiroc-2A;
- 6. Источник излучения Cs-137/Ti-44.

Рисунок 11 – Принципиальная схема установки для измерения энергетического разрешения и восстановления координаты XY – взаимодействия

Оценка энергетического разрешения

 $\delta \sim 9\%$

Собственное разрешение (662 кэВ):

 $\delta \sim 6\%$

1000 800H 600F 400 200 'n 1000 2000 3000 $\delta \sim 8\%$

charge_distr charge distr Entries 2400 Entries 311608 Mean 2468 RMS 1560 χ^2 / ndf 173.8 / 140 2000 **p0** 1853 ± 13.0 1800 p1 2601 ± 1.1 p2 117.6 ± 1.1 1600 p3 594.1 ± 23.1 p4 -0.0672 ± 0.0067 1400 1200**–** 5000 6000 7000 8000 9000 4000 Channels Рисунок 13 – Суммарный зарядовый спектр Ті-44 Относительное разрешение (511 кэВ): $\delta \sim 11\%$

Собственное разрешение (511 кэВ):

Восстановление координаты XY-взаимодействия для кристалла LYSO

Восстановление координаты XY-взаимодействия для кристалла GAGG

Источник – Am-241(60 кэВ)

Координатное разрешение (FWHM): 0,5 мм

Координатное разрешение (FWHM): 0,5 мм

Установка для оценки временного разрешения

- 1. Монолитные сцинтилляционные кристаллы GAGG(Ce) 12x12x12 мм;
- 2. матрицы SiPM 4x4 Onsemi ARRAYJ-30035-16P;
- 3. считывающие платы AiT Instruments AB16VB-ARRAYJ16P на 16 каналов;
- 4. источник питания (х2);
- 5. считывающая плата на основе чипа Petiroc-2A;
- 6. Источник излучения Ті-44.

Рисунок 20 – Принципиальная схема установки для измерения временного разрешения

Оценка временного разрешения

Временное разрешение (FWHM): 8 нс

Оценка загрузки детектора

- Ожидаемая активность источника в ПЭТ для лабораторных животных 1 МБк;
- средняя частота срабатываний: детектор 5х5 см → 0,1 МГц;
- длительность сигналов с детектора на основе матрицы SiPM SensL SPMArray4 и сцинтилляционного кристалла GAGG 15x12x10 мм – 400 нс.

Вероятность наложений импульсов:

 $\eta \approx n_0 t$, где n_0 — средняя частота срабатываний, t длительность сигналов.

Рисунок 23 – Осциллограмма сигнала с суммарного канала матрицы

$$\eta \approx 4\%$$

Заключение

- Проведена оценка разброса коэффициентов усиления SiPM матрицы Onsemi ARRAYJ-30035-16P. Максимальный разброс относительно среднего для первой матрицы составил 0,98 ± 0,07, для второй – 0,55 ± 0,05.
- Разработан алгоритм для определения коэффициентов усиления и напряжений пробоя SiPM. Разброс напряжений пробоя SiPM матрицы Hamamatsu S13361-3050AE-08 составил 7,7 В.
- Проведена оценка относительного энергетического разрешения. Для матрицы Onsemi ARRAYJ-30035-16Р и сцинтиллятора GAGG 12x12x12 мм оно составило δ ~ 9% (662 кэВ) и δ ~ 11% (511 кэВ).
- Разработан алгоритм для восстановления координаты XY взаимодействия. Корректность работы алгоритма показана на примере многопиксельного кристалла LYSO и монолитного кристалла GAGG. Координатное разрешение составило 0,5 мм.
- Проведена оценка временного разрешения детектора на основе двух матриц SiPM Onsemi ARRAYJ-30035-16P и сцинтилляционных кристаллов GAGG 12x12x12 мм двумя различными способами: по времени первых сработавших SiPM матрицы и по среднему времени срабатывания всех SiPM. Временное разрешение (FWHM) составило 4 нс и 8 нс соответственно.
- Произведена оценка загрузки детектора на основе кристалла GAGG 15x12x10 мм. При загрузке в 0,1 МГц вероятность наложений импульсов составит 4%.

Спасибо за внимание!

Backup

Спектр Am-241 и фон распределения

Распределение Коши

$$f_X(x) = rac{1}{\pi \gamma \left[1 + \left(rac{x-x_0}{\gamma}
ight)^2
ight]} = rac{1}{\pi} \left[rac{\gamma}{(x-x_0)^2+\gamma^2}
ight],$$

где

 $ullet x_0 \in \mathbb{R}-$ параметр сдвига; $ullet \gamma > 0-$ параметр масштаба.

Распределение Коши во временных измерениях

Cates JW, Levin CS. Electronics method to advance the coincidence time resolution with bismuth germanate. Phys Med Biol. 2019 Sep 5;64(17):175016. doi: 10.1088/1361-6560/ab31e3.