Получение дифференциальных сечений для процесса ассоциированного рождения Z-бозона с фотоном в *pp* столкновениях с энергией √s = 13 ТэВ в эксперименте ATLAS

Казакова К.К.

Научный руководитель: к.ф.-м.н. Солдатов Е.Ю.



Выпускная квалификационная работа магистра 28.06.2024



# Мотивация и задачи

### <u>Мотивация:</u>

- Измерение дифференциальных сечений Z(vv)ү для проверки Стандартной модели (СМ) с точностью NNLO КХД и NLO ЭС поправок;
- Поиск аномальных тройных вершин в виду чувствительности процесса Z(vv)ү к проявлениям «новой физики».

### <u>Цель:</u>

Получение дифференциальных сечений для процесса Z(vv)ү.

### <u>Задачи:</u>

- Оценка фона, обусловленного неверной идентификацией адронной струи как фотона (jet → γ), а также оценка формы распределения;
- Построение стабильной статистической модели и оценка доминирующих фоновых процессов, а также оценка силы сигнала Z(vv)ү;
- Получение интегрального и дифференциальных сечений как функций различных переменных с использованием процедуры <<развертывания>>.





## Фазовое пространство и фоновые процессы

• Сигнальная область (СО) определена на основе максимизации значимости сигнала:



• Фотон идентифицируется как «жёсткий», если он удовлетворяет всем критериям формы ЭМ ливня.

|                           | Изоляционная рабочая точка | Калориметрическая изоляция                                                               | Трековая изоляция                                                 |
|---------------------------|----------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| критерии изолированности. | FixedCutLoose              | $E_{\mathrm{T}}^{\mathrm{cone20}}-0.065{\cdot}p_{\mathrm{T}}^{\gamma}<0$ Γэ $\mathrm{B}$ | $p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{\gamma} < 0.05$ |

- Вклад фоновых процессов для Z(vv) у в наблюдаемые данные:
  - <sup>35%</sup> γ+jets фит данных с использованием контрольных областей (КО) (форма из МК);
  - <sup>15%</sup> W(lv)ү и ttү фит данных с использованием КО (форма из МК);
  - 11% е  $\rightarrow$  ү оценка вклада из данных;
  - iet → γ оценка ABCD методом (форма из метода интервалов);
  - 0.9% Z(ll)γ на основе MK.

# jet $\rightarrow \gamma$ : ABCD метод

- В качестве переменных используются идентификационные и изоляционные критерии для фотонов, которые не должны коррелировать;
- Определяется несколько типов мягких фотонов (loose'), для которых нарушаются различные критерии формы ЭМ ливня;

$$R = \frac{N_A N_D}{N_C N_B}$$

|              | loose'2       | loose'3     | loose'4       | loose'5       |                       |
|--------------|---------------|-------------|---------------|---------------|-----------------------|
| $R_{\rm MC}$ | $1.1 \pm 0.2$ | $1.1\pm0.2$ | $1.1 \pm 0.2$ | $1.4 \pm 0.3$ | В АВСО областях на МК |

| $M_{\rm cut},  \Gamma$ эВ | loose'2       | ose'2 loose'3 loos |               | loose'5       |
|---------------------------|---------------|--------------------|---------------|---------------|
|                           |               | MK                 |               |               |
| 4.5                       | $1.18\pm0.19$ | $1.15\pm0.16$      | $1.08\pm0.13$ | $1.11\pm0.13$ |
| 7.5                       | $1.12\pm0.14$ | $1.16\pm0.13$      | $1.10\pm0.11$ | $1.11\pm0.11$ |
| 10.5                      | $1.15\pm0.14$ | $1.16\pm0.13$      | $1.11\pm0.11$ | $1.12\pm0.11$ |
|                           | Ha            | а основе данн      | ных           |               |
| 4.5                       | $0.99\pm0.11$ | $1.05\pm0.11$      | $1.07\pm0.09$ | $1.09\pm0.09$ |
| 7.5                       | $1.13\pm0.11$ | $1.09\pm0.09$      | $1.06\pm0.08$ | $1.05\pm0.08$ |
| 10.5                      | $1.00\pm0.10$ | $0.99\pm0.09$      | $0.96\pm0.07$ | $0.96\pm0.07$ |



Итоговые оценки R факторов на данных и MK



Оценки в В-Е, Е, D-F и F областях

$$N_A = N_A^{\text{sig}} + N_A^{\text{bkg}} + N_A^{jet \to \gamma},$$
  

$$N_B = c_B N_A^{\text{sig}} + N_B^{\text{bkg}} + N_B^{jet \to \gamma},$$
  

$$\dots$$

 Систематическая погрешность включает погрешности на определение областей, на R и на параметры утечки сигнала.

оценка jet → γ в CO составила 1770 ± 160 (стат.) ± 350 (сист.) событий.

# јet → γ: метод интервалов

- Форму jet → ү фона невозможно правильно смоделировать с помощью МК. Поэтому для оценки формы jet → ү фона используется адаптированный метод интервалов.
- В методе интервалов фазовое пространство разделяется на две ортогональные области на основе калориметрической изоляции фотона.
- Неизолированная область разделяется на 4 независимых интервала.
- ⇒ Выбраны 4 интервала: [0.065, 0.090, 0.115, 0.140, 0.165].

 $H_{jet \to \gamma}^{SR} = H_{jet \to \gamma}^{[0.A_1, 0.B_1]}[X] + 2 \cdot \Delta^{CR}[X]$ 

$$\begin{split} N_{\mathrm{CR}(\mathrm{i})}^{jet \to \gamma} &= N_{\mathrm{CR}(\mathrm{i})}^{\mathrm{data}} - N_{\mathrm{CR}(\mathrm{i})}^{Z(\nu\bar{\nu})\gamma} - N_{\mathrm{CR}(\mathrm{i})}^{\mathrm{bkg}} \\ H_{jet \to \gamma}^{[0.A, 0.B]} &= H_{\mathrm{data}}^{[0.A, 0.B]}[X] - H_{\mathrm{sig}}^{[0.A, 0.B]}[X] - H_{\mathrm{bkg}}^{[0.A, 0.B]}[X] \\ \Delta^{CR}[X] &= \left(\frac{H_{jet \to \gamma}^{[0.A_1, 0.B_1]}[X] - H_{jet \to \gamma}^{[0.A_3, 0.B_3]}[X]}{2} + \frac{H_{jet \to \gamma}^{[0.A_2, 0.B_2]}[X] - H_{jet \to \gamma}^{[0.A_4, 0.B_4]}[X]}{2}\right) \\ \Phi$$
орма jet — у в сигнальной области: Корректирующее

Корректирующее слагаемое



## Метод максимального правдоподобия

КО Wy определяется аналогично CO, за исключением инверсии

КО үј определяется аналогично СО, за исключением инверсии Wү KO отбора на значимость МЕТ < 11. Для реализации процедуры фитирования вводятся три свободных ≥ 1 параметра:  $\mu_{Z_{V}}$ ,  $\mu_{W_{V}}$  и  $\mu_{v_{i}}$  (параметры интереса, ПИ). Сила сигнала:  $\mu_{Z\gamma} = \mu = \frac{\nu_{\text{meas.}}^{\circ}}{\nu_{\text{SM}}^{s}} = \frac{\sigma_{\text{fid, meas.}}^{\circ}}{\sigma_{\text{fid, SM}}^{s}}$ үј КО COДля учета систематических погрешностей и ограничений на 11 MET significance нормировку фоновых процессов в статистическую модель включается набор подстроечных параметров Ө (ПП). Тогда функция правдоподобия имеет вид:  $\mathcal{L}(\mu, \theta) = \prod_{r}^{\text{regions}} \left[ \prod_{i}^{\text{bins} \in r} \operatorname{Pois}(N_i^{\text{data}} | \mu \nu_i^s \eta^s(\theta) + \nu_i^b \eta^b(\theta)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_i)$ 

N<sub>lep</sub>

 Измерение параметров интереса µ и подстроечных параметров θ осуществляется путем максимизации функции правдоподобия.

К. Казакова (НИЯУ МИФИ)

отбора на N лептонов > 0;

## Процедура фитирования

- Для получения результатов применяется трехэтапная процедура фитирования:
  - 1. Фитирование в Wү и үј KO для первичной оценки нормировочных коэффициентов для фонов и для отладки используемых систематических погрешностей (background only fit);
  - Фитирование в Wү и үј KO и в CO с использованием данных Азимова (ожид. фоны + сигнал).
     Это позволит получить ожидаемую значимость и ожидаемые погрешности для ПИ.
  - 3. Фитирование в Wγ и γј KO и CO с использованием наблюдаемых данных.

#### 

#### Систематические погрешности:

- Погрешности, связанные с триггером и светимостью;
- Экспериментальные погрешности на энергию и импульс объектов, на эффективность реконструкции и идентификации;
- Теоретические погрешности, связанные с вариацией структурных функций и константы α<sub>s</sub>;
- Теоретические погрешности, связанные с вариацией масштабов перенормировки μ<sub>R</sub> и факторизации μ<sub>F</sub>;
- Теоретические погрешности, связанные с моделированием партонных ливней и сопутствующих событий.

### Результаты фитирования

### • Фитирование в КО:

### • Фитирование на данных Азимова:

 $\mu_{W\gamma}$  = 0.94 ± 0.13 (стат.  $\oplus$  сист.), и  $\mu_{vi}$  = 0.75 ± 0.11 (стат.  $\oplus$  сист.).  $\mu_{Z\gamma}$  = 1.00 ± 0.07 (стат.  $\oplus$  сист.),  $\mu_{W\gamma}$  = 0.94 ± 0.13 (стат.  $\oplus$  сист.),  $\mu_{\gamma i}$  = 0.75 ± 0.11 (стат.  $\oplus$  сист.). Ожидаемая значимость 69 о.

#### <u>Результаты фитирования реальными данными:</u>



К. Казакова (НИЯУ МИФИ)

## Искажение данных детектором

- На основе данных и оцененных фонов можно получить наблюдаемое количество сигнальных событий;
- Однако из-за конечности покрытия фазового пространства детектором, не 100% эффективности и конечного разрешения, регистрируемые события «размываются».

| $egin{array}{c} A_{Z\gamma} & 	extsf{} \ \phi$ актор покрытия пространства детектором $C_{Z\gamma} & 	extsf{} \ \phi$ актор эффективности отборов сигнала |                                                                                                                                              |           | ом <u>Эфф</u>                                        | ективность отбора: $N_{ m gen}^{ m MCfid.}$                | $\varepsilon_{Z(\nu\bar{\nu})\gamma} = A_{Z\gamma} \cdot C_{Z\gamma}$ $N_{\rm rec}^{\rm MCfid.}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Доверительная область: Расшире                                                                                                                            |                                                                                                                                              |           | $\gamma = \frac{8}{N_{\rm gen}^{\rm MCex.fid.}}$     | $C_{Z\gamma} = \overline{N_{\text{gen}}^{\text{MC fid.}}}$ |                                                                                                  |
| Категория                                                                                                                                                 | $\frac{\text{Отбор}}{F^{\gamma} > 150 \Gamma_{\text{p}} \text{B}}$                                                                           | доверите  | льная область:                                       |                                                            |                                                                                                  |
| ФОТОНЫ                                                                                                                                                    | $ \eta  < 2.37$ kpome $1.37 <  \eta  < 1.52$                                                                                                 | Varananua | Orfer                                                |                                                            |                                                                                                  |
| Струи                                                                                                                                                     | $ert \eta ert < 4.5 \ p_{ m T} > 50$ ГэВ                                                                                                     | Фотоны    | $\frac{1}{E_{\rm T}^{\gamma} > 150 \Gamma\text{>B}}$ | <u>Оценка корреки</u><br>основе                            | <u>ионных факторов на</u><br>e MK Z(vv)y:                                                        |
| Лептоны                                                                                                                                                   | $\frac{\Delta R(jet, \gamma) > 0.3}{N_l = 0}$                                                                                                | Струн     | $ \eta  < 2.37$                                      | -                                                          | Значение                                                                                         |
| Нейтрино<br>События                                                                                                                                       | $p_{\rm T}^{\nu\bar{\nu}} > 130 \ \Gamma \Im B$                                                                                              | Струи     | $ \eta  < 4.5$<br>$p_{\mathrm{T}} > 50$ ГэВ          | $A_{Z\gamma}$ 0.915                                        | $7 \pm 0.0008 \pm 0.0210$                                                                        |
|                                                                                                                                                           | $\begin{aligned}  \Delta\phi(\vec{p}_{\rm T}^{\rm miss}, j_1)  &> 0.3 \\  \Delta\phi(\vec{p}_{\rm T}^{\rm miss}, j_1)  &> 0.3 \end{aligned}$ | TT        | $\Delta R(jet, \gamma) > 0.3$                        | $C_{Z\gamma} = 0.7497$                                     | $7 \pm 0.0007 \pm 0.0577$                                                                        |
|                                                                                                                                                           | Значимость $p_{\rm T}^{\nu\nu} > 11$                                                                                                         | Нейтрино  | $p_{\rm T}^{\nu\nu} > 130.1{ m sB}$                  | -                                                          |                                                                                                  |



К. Казакова (НИЯУ МИФИ)

# Процедура «развёртывания»

Цель процедуры «развёртывания» заключается в экстраполяции наблюдаемых измерений в истинные.
 Пусть х - измеряемая величина, а у- измеренная величина. Тогда их связь: Âx = y
 Матрица преобразования Â называется матрицей отклика, которая связывает величины х и у

$$R_{ij} = \frac{1}{\alpha_i} \varepsilon_j M_{ij} \qquad M_{ij} = \frac{N_{ij}^{\text{det. } \cap \text{ fid.}}}{N_j^{\text{det. } \cap \text{ fid.}}} \qquad \alpha_i = \frac{N_i^{\text{det. } \cap \text{ fid.}}}{N_i^{\text{det.}}} \qquad \varepsilon_j = \frac{N_j^{\text{det. } \cap \text{ fid.}}}{N_j^{\text{fid.}}}$$

Процедура «развёртывания» осуществлена согласно ММП. <u>Метод предполагает следующие шаги:</u>

- 1. «Свёртка» сигнального распределения на уровне генератора с помощью  $\hat{R}$ ;
- 2. Фитирование «свёрнутого» распределения данными за вычетом ожидаемых фонов;
- Нормировка сигнального распределения на уровне генератора на коэффициенты фита в каждом бине;

Дифференциальное сечение в расширенной области может быть вычислено как:



$$\frac{\Delta \sigma_j}{\Delta x_j} = \frac{N_j^{\text{unfold}}}{(\int \mathcal{L} dt) \cdot \Delta x_j}$$

К. Казакова (НИЯУ МИФИ)

## Дифференциальные сечения

• Измерения дифференциальных сечений проведены в расширенной доверительной области для 6-ти



- Полученные результаты измерений сравниваются с предсказаниями генератора Sherpa (СМ), а также с предсказаниями генератора МСFM на уровне точности NNLO КХД (СМ).
- Проведена валидация полученных измерений. Результаты совпадают с ожиданиями.
- В силу хорошего согласия в высокоэнергетической области аномальные вершины не найдены и работа может далее использоваться для постановки пределов.

К. Казакова (НИЯУ МИФИ)

#### ВКР магистра 28.06.2024

Больше распределений в back up

# Заключение

Цель работы заключалась в получении дифференциальных сечений для процесса ассоциированного рождения Z(vv)γ. В соответствии с поставленными задачами:

- Получена оценка jet → ү событий в CO, которая составила 1770 ± 160 (стат.) ± 350 (сист.).
- Адаптирован метод интервалов для оценки jet → ү событий, и получены оценки распределений в СО для различных переменных.
- Построена стабильная статистическая модель, в которую были добавлены экспериментальные и теоретические систематические погрешности.
- Осуществлена процедура фитирования и получены нормировочные коэффициенты для фоновых процессов W(lv)γ, ttγ и γ+jets, также оценена сила сигнала Z(vv)γ, значение которой составило μ<sub>Zγ</sub> = 0.72 ± 0.06 (стат. ⊕ сист.).
- Получено значение интегрального сечения, которое составило σ = 93 ± 8 (стат. 
   ⊕ сист.) фбн.
- Произведена процедура «развёртывания» и получены дифференциальные сечения как функции 6-ти переменных:  $E_T^\gamma$ ,  $E_T^{
  m miss}$ ,  $N_{
  m jets}$ ,  $\eta_\gamma$ ,  $p_T^{j_1}$ ,  $p_T^{j_2}$ . Проведена валидация измерений.

В силу хорошего согласия в высокоэнергетической области аномальные вершины не найдены и работа может далее использоваться для постановки пределов.

### Спасибо за внимание!



## Оптимизация отборов

| Variable                          | 1               | 2               | 3               | 4                |  |  |  |  |  |
|-----------------------------------|-----------------|-----------------|-----------------|------------------|--|--|--|--|--|
| $E_T^{miss} signif.$              |                 | > 11            |                 |                  |  |  |  |  |  |
| $\Delta \phi(E_T^{miss}, \gamma)$ |                 | > 0.6 —         |                 |                  |  |  |  |  |  |
| $\Delta \phi(E_T^{miss}, j_1)$    |                 | > 0.3           |                 |                  |  |  |  |  |  |
| $E_T^{miss}$ , GeV                |                 | >130            |                 |                  |  |  |  |  |  |
|                                   |                 | Signal          |                 |                  |  |  |  |  |  |
| $Z(\nu\nu)\gamma QCD$             | 9928 ± 8        | $10021 \pm 8$   | 10711 ± 8       | $13934 \pm 9$    |  |  |  |  |  |
| $Z(\nu\nu)\gamma EWK$             | $151.6\pm0.3$   | $153.6 \pm 0.3$ | $166.3 \pm 0.3$ | $312.3 \pm 0.4$  |  |  |  |  |  |
| Total signal                      | 10080±8         | $10175 \pm 8$   | $10878 \pm 8$   | $14247 \pm 9$    |  |  |  |  |  |
| Background                        |                 |                 |                 |                  |  |  |  |  |  |
| Wy QCD                            | $3022 \pm 20$   | $3061 \pm 20$   | $3310 \pm 21$   | 6795 ± 29        |  |  |  |  |  |
| $W\gamma EWK$                     | $99.9 \pm 0.6$  | $101.3 \pm 0.6$ | $109.4 \pm 0.6$ | $309.8 \pm 1.1$  |  |  |  |  |  |
| tt, top                           | $156 \pm 5$     | $176 \pm 5$     | $201 \pm 6$     | $2800 \pm 22$    |  |  |  |  |  |
| $W(e\nu)$                         | $3091 \pm 453$  | $3409 \pm 521$  | $3591 \pm 487$  | $8540 \pm 663$   |  |  |  |  |  |
| ttγ                               | $161 \pm 3$     | $163 \pm 3$     | 178 ± 3         | $787 \pm 6$      |  |  |  |  |  |
| γ+j                               | $7642 \pm 79$   | $7757 \pm 80$   | 8123 ± 82       | $67517 \pm 217$  |  |  |  |  |  |
| Zj                                | $221 \pm 16$    | $328 \pm 20$    | $415 \pm 21$    | $2583 \pm 50$    |  |  |  |  |  |
| $Z(ll)\gamma$                     | $197 \pm 4$     | $200 \pm 4$     | $211 \pm 4$     | $426 \pm 5$      |  |  |  |  |  |
| $W(\tau \nu)$                     | $412 \pm 65$    | $575 \pm 72$    | $640 \pm 69$    | $4615 \pm 138$   |  |  |  |  |  |
| Total bkg.                        | $15002 \pm 465$ | 15770 ± 533     | $16779 \pm 499$ | 94373 ± 714      |  |  |  |  |  |
| Stat. signif.                     | 63.6 ± 0.6      | $63.2 \pm 0.6$  | $65.4 \pm 0.6$  | $43.23 \pm 0.14$ |  |  |  |  |  |

Table 33: The results of selection optimisation at three different working points *FixedCutTight*, *FixedCutTightCaloOnly*, *FixedCutLoose*.

#### К. Казакова (НИЯУ МИФИ)

# Фоновые процессы

- конечные состояния  $\tau \nu \gamma$  и  $l \nu \gamma$  от КХД и электрослабого рождения  $W \gamma$ , где  $\tau$  распадается на адроны, или где электрон или мюон от распада  $\tau$ или W не регистрируются детектором;
- события γ + струя, в которых большой E<sup>miss</sup> возникает из комбинации реального E<sup>miss</sup> от нейтрино в распадах тяжелых кварков и от неверно измеренной энергии струй;
- события  $W(e\nu)$ , t-кварк и  $t\bar{t}$ , где электрон в конечном состоянии неверно идентифицируется как фотон  $(e \to \gamma)$ ;
- события от рождения tt̄γ, когда один или оба W-бозона от распада t-кварка распадаются на лептоны. Эти лептоны либо распадаются на τ-лептоны, которые либо распадаются на адроны, либо не реконструируются;
- события  $Z(ll) + \gamma$  (преимущественно  $\tau$ -лептоны), где  $\tau$  распадается на адроны или когда электрон или мюон от распада  $\tau$  или Z не регистрируется.

### Потерянный поперечный импульс $ec{p}_{ ext{T}}^{ ext{miss}}$

Определяется как сумма поперечных импульсов частиц в конечном состоянии со знаком минус  $ec{p}_{
m T}^{\,
m miss}\,=\,-\sumec{p}_{
m T}^{f}$ 

$$\begin{split} E_{x(y)}^{\text{miss}} &= E_{x(y)}^{\text{miss, e}} + E_{x(y)}^{\text{miss, \gamma}} + E_{x(y)}^{\text{miss, jets}} + \\ &+ E_{x(y)}^{\text{miss, soft}} + E_{x(y)}^{\text{miss, \mu}} \end{split}$$

Софттерм реконструируется как  $p_{x(y)}^{\mathrm{miss,\ SoftTerm}}$ потерянный поперечный импульс не ассоциированный ни с одной из жестких частиц.

 $E_{\rm T}^{{\rm cone}20}$  задает энерговыделение в калориметре внутри конуса раствором  $\Delta R=0.2$  внутри трека кандидата в фотон

Значимость  $E_{\mathrm{T}}^{\mathrm{miss}}$  =  $E_{\mathrm{T}}^{\mathrm{miss}^2}/(\sigma_L^2(1ho_{LT}^2))$ 

где  $\sigma_L$  – дисперсия измерения потерянного поперечного импульса в продольном направлении

*ρ<sub>LT</sub>* – корреляционный фактор измерения продольной и поперечной компонент потерянного поперечного импульса

# ABCD метод оценки jet $\rightarrow \gamma$

 $loose'2: w_{s3}, F_{side}$ 

 $loose'3: w_{s3}, F_{side}, \Delta E$ 

 $loose'4: w_{s3}, F_{side}, \Delta E, E_{ratio}$ 

 $loose'5: w_{s3}, F_{side}, \Delta E, E_{ratio}, w_{tot}$ 



- ws3 ширина электромагнитного ливня с использованием трех стрипов вокруг стрипа с максимальной энергией
- Fside доля энергии вне трех стрипов, но внутри семи
- ∆Е разница энергий стрипов, где в одном слое  $\bigcirc$ выделилась вторая по величине энергия, и стрипа, где выделилась наи меньшая энергия
- Eratio отношение разности энергий, ассоциированных с наиболее высоким и вторым по величине выделением энергии к сумме этих энергий
- wtot полная поперечная ширина ливня

$$N_A^{jet 
ightarrow \gamma} =$$
 1770 ± 160 ± 350



Isolated Non-Isolated

A (CO):  $E_{T}^{cone20}$  - 0.065  $p_{T}^{\gamma}$  < 0, tight B (KO): isogap <  $E_T^{cone20}$  – 0.065  $p_T^{\gamma}$ , tight C (KO):  $E_{T}^{cone20}$  - 0.065  $p_{T}^{\gamma}$  < 0, non-tight D (KO): isogap <  $E_{T}^{cone20}$  - 0.065  $p_{T}^{\gamma}$ , non-tight

$$f_{
m A}^{et
ightarrow\gamma}=$$
 1770 ± 160 ± 350



# ABCD метод оценки jet $\rightarrow \gamma$

- «жесткая» (tight) и изолированная (isolated) область (область A CO): события в этой области содержат фотон, который удовлетворяет условию:  $E_{\rm T}^{\rm cone20} 0.065 \cdot p_{\rm T}^{\gamma} < 0$  ГэВ и удовлетворяет «жесткому» идентификационному критерию;
- «жесткая» (tight), но неизолированная (non-isolated) область (KO B): события в этой области содержат фотон, который удовлетворяет условию: изоляционный зазор, ГэВ <  $E_{\rm T}^{\rm cone20} 0.065 \cdot p_{\rm T}^{\gamma}$  и удовлетворяет «жесткому» идентификационному критерию;
- «мягкая» (loose) и изолированная (isolated) область (KO C): события в этой области содержат фотон, который удовлетворяет условию:  $E_{\rm T}^{\rm cone20} 0.065 \cdot p_{\rm T}^{\gamma} < 0$  ГэВ и удовлетворяет «мягкому» идентификационному критерию;
- «мягкая» (loose), но неизолированная (non-isolated) область (KO D): события в этой области содержат фотон, который удовлетворяет условию: изоляционный зазор, ГэВ <  $E_{\rm T}^{\rm cone20} 0.065 \cdot p_{\rm T}^{\gamma}$  и удовлетворяет «мягкому» идентификационному критерию.

$$\begin{split} N_{\rm A} &= N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm A}^{\rm bkg} + N_{\rm A}^{\rm jet \rightarrow \gamma}; \\ N_{\rm B} &= c_{\rm B} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm B}^{\rm bkg} + N_{\rm B}^{\rm jet \rightarrow \gamma}; \\ N_{\rm C} &= c_{\rm C} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm D} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm D}^{\rm bkg} + N_{\rm D}^{\rm jet \rightarrow \gamma}; \\ N_{\rm A} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm A}^{\rm bkg} + N_{\rm A}^{\rm jet \rightarrow \gamma}; \\ N_{\rm A} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm A}^{\rm bkg} + N_{\rm A}^{\rm jet \rightarrow \gamma}; \\ N_{\rm A} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm A}^{\rm bkg} + N_{\rm A}^{\rm jet \rightarrow \gamma}; \\ N_{\rm A} &= c_{\rm D} N_{\rm A}^{Z(\nu\bar{\nu})\gamma} + N_{\rm A}^{\rm bkg} +$$

|        |                 |                 |                                     |                 |   | Данные          | $W\gamma$      | $e \to \gamma$  | $tt\gamma$      | $\gamma + \mathrm{jet}$ | $Z(ll)\gamma$ |
|--------|-----------------|-----------------|-------------------------------------|-----------------|---|-----------------|----------------|-----------------|-----------------|-------------------------|---------------|
|        | loose'2         | loose'3         | loose'4                             | loose'5         | А | $23380 \pm 150$ | $3420\pm20$    | $2608 \pm 11$   | $178 \pm 3$     | $8120 \pm 80$           | $211 \pm 4$   |
| Rists  | $0.99 \pm 0.18$ | $1.05 \pm 0.15$ | $\frac{107 \pm 0.14}{107 \pm 0.14}$ | $1.09 \pm 0.16$ | В | $270 \pm 16$    | $17.7 \pm 1.3$ | $4.269\pm0.016$ | $0.46 \pm 0.14$ | $7\pm3$                 | $0.6 \pm 0.2$ |
| - data | 0.00 ± 0.10     | 1.00 ± 0.10     | 1.01 ± 0.11                         | 1.00 ± 0.10     | С | $4390 \pm 70$   | $108 \pm 3$    | $92.8\pm0.3$    | $6.1 \pm 0.5$   | $259 \pm 13$            | $7.1 \pm 0.6$ |
|        |                 |                 |                                     |                 | D | $500 \pm 20$    | $0.6 \pm 0.2$  | $0\pm 0$        | $0.07 \pm 0.05$ | $0.06\pm0.06$           | $0\pm 0$      |

# ABCD метод оценки jet $\rightarrow \gamma$

- Статистическая погрешность:
- ⇒ Числа событий в 4-ех регионах в данных и не jet → γ фонах проварьированы на ±1σ независимо (9%).

1765 +240 +85 -55 -60

+33

1765

+241

-244

Изоляционный зазор +0.3 ГэВ

Изоляционный зазор -0.3 ГэВ

 $R + \Delta R$ 

 $R - \Delta R$ 

| Отатистические погрешности на параметры утечки незначительны. |                      |
|---------------------------------------------------------------|----------------------|
|                                                               | Центральное значение |
| Итоговая статистика: 9%.                                      | loose'2              |
|                                                               | loose'3              |
| Систематическая погрешность :                                 | loose'5              |

- ⇒ Определение областей и выбор изоляционного зазора варьирование АВСD определения областей на ±1 о в данных (14%).
- $\Rightarrow$  Отклонение от номинального значения путем фарьирования R на ± 0.10 (14%). <u>Central value</u>
- погрешность на параметры «утечки» путем использования альтернативного МК генератора и различных моделей партонных ливней(0.7%).

|                         | Различные МК генераторы и модели партонных ливней |                                    |          |  |  |  |
|-------------------------|---------------------------------------------------|------------------------------------|----------|--|--|--|
| параметры утечки        | MadGraph+Pythia8, Sherpa 2.2                      | MadGraph+Herwig7, MadGraph+Pythia8 | $\delta$ |  |  |  |
| $c_{\mathrm{B}}$        | $(278 \pm 4) \cdot 10^{-5}$                       | $(47 \pm 2) \cdot 10^{-4}$         | 7%       |  |  |  |
| $c_{ m C}$              | $(3205 \pm 14) \cdot 10^{-5}$                     | $(301 \pm 6) \cdot 10^{-4}$        | 3%       |  |  |  |
| $c_{ m D}$              | $(178 \pm 11) \cdot 10^{-6}$                      | $(39 \pm 6) \cdot 10^{-5}$         | 120%     |  |  |  |
| $jet  ightarrow \gamma$ | 1765                                              | 1752                               | 0.7%     |  |  |  |

- Погрешность на эффективность реконструкции фотона δ<sub>eff</sub> <sup>iso/ID</sup> (1.3%). Итоговая систематика: 20%.
  - Оценка jet → ү событий : 1770 ± 160 ± 350. Z(vv)+jets и multi-jet МС предсказывают 2000 ± 1300 событий.

К. Казакова (НИЯУ МИФИ)

### jet → γ: метод интервалов



К. Казакова (НИЯУ МИФИ)

# Метод максимального правдоподобия

$$\mathcal{L}(\mu, \theta) = \prod_{r} \left[ \prod_{i}^{\text{bins} \in r} \operatorname{Pois}(N_i^{\text{data}} | \mu \nu_i^s \eta^s(\theta_i) + \nu_i^b \eta^b(\theta_i)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_i),$$

- $N_i^{
  m data}$  есть количество наблюдаемых событий в данных в бине;
- $\mathcal{V}_i$  есть ожидаемое количество сигнальных или фоновых событий в бине
- η(θ<sub>i</sub>) есть функция отклика, отражающая влияние систематических неопределенностей и ограничений нормировки на количество событий в бине с помощью набора ПП θ;
- £(\(\theta\)\_i) есть функция правдоподобия «вспомогательного измерения», отражающая природу систематических неопределенностей. С точки зрения статистической модели это «ограничивающий» множитель, уменьшающий значение правдоподобия и не позволяющий принимать ей любые значения.

Функция  $q(\mu, \hat{\mu}, \hat{ heta})$  используется для вычисления значимости измерения и неопределенностей оценок  $\hat{\mu}$  и  $\hat{ heta}$  и определяется как:

$$q(\mu, \hat{\mu}, \hat{\theta}) = -2\ln\lambda(\mu, \hat{\mu}, \hat{\theta}) = -2\ln\frac{\mathcal{L}(\mu, \hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})}$$

 $\lambda(\mu,\hat{\mu},\hat{ heta})\,$  есть профиль правдоподобия (profile likelihood ratio)

## Теоретические погрешности

Погрешности, связанные с вариацией структурных функций и константы сильного взаимодействия:

- В соответствии с рекомендациями PDF4LHC учитываются внутренние PDF и α<sub>s</sub> компоненты для NNPDF3.0 NLO PDF набора. Для вычисления погрешности используется ансамбль из NNPDF3.0 PDF наборов (100 параметров в сумме). Для получения погрешности числа событий применяется следующий порядок действий:
  - 1. Получение числа событий в бине Xi для i = 100 вариаций NNPDF набора.
  - 2. Замена отрицательных значений на 0 (если Xi < 0, Xi = 0).
  - 3. Расстановка всех значений в порядке возрастания:

 $X^{1} \leq X^{2} \leq \ldots \leq X^{99} \leq X^{100}.$ 

Выбор значений, соответствующих границам 68% доверительного интервала, и получение погрешности:

$$\delta^{\rm PDF} X = \frac{X^{84} - X^{16}}{2}.$$

Для получения погрешности на константу сильного взаимодействия α<sub>s</sub> использовались верхняя и нижняя вариации: α<sub>s</sub> = 0.1180 ± 0.0015. Погрешность вычисляется по формуле:

$$\delta^{\alpha_s} X = \frac{X(\alpha_s = 0.1195) - X(\alpha_s = 0.1165)}{2}.$$

Также учитывается погрешность от альтернативных наборов СТ14 и ММНТ2014

## Теоретические погрешности

Погрешности, связанные с вариацией масштабов перенормировки и факторизации:

- Погрешности, связанные с вариацией масштабов перенормировки и фрагментации, оцениваются путем варьирования шкалы перенормировки µR и шкалы факторизации µF. Рассматриваются шесть комбинаций:
  - $\mu_F = \mu_R = 0.5\mu_0;$
  - $\mu_F = \mu_0, \ \mu_R = 0.5\mu_0;$
  - $\mu_R = \mu_0, \, \mu_F = 0.5\mu_0;$
  - $\mu_F = \mu_R = 2\mu_0;$
  - $\mu_F = 2\mu_0, \ \mu_R = \mu_0;$

• 
$$\mu_F = \mu_0, \ \mu_R = 2\mu_0.$$

Погрешности, связанные с моделированием партонных ливней:

$$\delta^{\text{model.}} X = |X^{\text{altern.}} - X^{\text{nominal}}|.$$

Максимальное отклонение от номинального числа событий взято в качестве систематической погрешности.





## Систематические погрешности

### <u>Значения систематических</u> погрешностей фактора покрытия пространства детектором

| Источник           | Значение   |
|--------------------|------------|
| $	ext{PDF}+lpha_s$ | 1.86%      |
| MMHT2014           | 1.33%      |
| CT14               | ${<}0.1\%$ |

### <u>Значения систематических погрешностей</u> коррекционного фактора

| Источник                         | Значение   |
|----------------------------------|------------|
| Оценка фонов из данных           | 4.02%      |
| Эффективность триггера           | 1.38%      |
| Светимость                       | ${<}0.1\%$ |
| Струи                            | 5.13%      |
| Электроны и фотоны               | 0.96%      |
| Мюоны                            | ${<}0.1\%$ |
| Тау-лептоны                      | ${<}0.1\%$ |
| Энергия фотона                   | 2.84%      |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ | 0.27%      |
| Моделирование                    | 2.42%      |

# Фитирование в КО

|                             | До фи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | та:                                                                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Посл                                                                                                                                                                  | е фита:                                                                                                              |                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------|
|                             | $W\gamma$ KO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\gamma j$ KO                                                                                                                                                                                       | СО                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $W\gamma$ KO                                                                                                                                                          | $\gamma j$ KO                                                                                                        | CO               |
| $Z(\nu\bar{\nu})\gamma$ QCD | $540.5 \pm 1.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1596 \pm 3$                                                                                                                                                                                        | $10711 \pm 8$                                                                                                                                                                                               | $Z(\nu\bar{\nu})\gamma$ QCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $500 \pm 70$                                                                                                                                                          | $1400 \pm 300$                                                                                                       | $10400 \pm 700$  |
| $Z(\nu\bar{\nu})\gamma$ EWK | $12.39 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $85.2 \pm 0.2$                                                                                                                                                                                      | $166.3 \pm 0.3$                                                                                                                                                                                             | $Z(\nu\bar{\nu})\gamma$ EWK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $12.4 \pm 1.3$                                                                                                                                                        | $84 \pm 10$                                                                                                          | $165 \pm 18$     |
| $W\gamma~{ m QCD}$          | $4660\pm30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1431 \pm 12$                                                                                                                                                                                       | $3310\pm20$                                                                                                                                                                                                 | $W\gamma~{ m QCD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4400 \pm 200$                                                                                                                                                        | $1400 \pm 200$                                                                                                       | $3140 \pm 170$   |
| $W\gamma \ { m EWK}$        | $257.1 \pm 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $101.0 \pm 0.6$                                                                                                                                                                                     | $109.4 \pm 0.6$                                                                                                                                                                                             | $W\gamma \ { m EWK}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $240 \pm 30$                                                                                                                                                          | $102 \pm 14$                                                                                                         | $93 \pm 13$      |
| $e \rightarrow \gamma$      | $309 \pm 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $675 \pm 6$                                                                                                                                                                                         | $2608 \pm 11$                                                                                                                                                                                               | $e  ightarrow \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $310 \pm 19$                                                                                                                                                          | $680 \pm 40$                                                                                                         | $2610 \pm 160$   |
| $j \to E_T^{\text{miss}}$   | $950 \pm 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $16870 \pm 110$                                                                                                                                                                                     | $8120\pm80$                                                                                                                                                                                                 | $j \to E_T^{\text{miss}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $740\pm110$                                                                                                                                                           | $12500 \pm 400$                                                                                                      | $6300 \pm 1100$  |
| $j  ightarrow \gamma^-$     | $118 \pm 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $850 \pm 80$                                                                                                                                                                                        | $1770\pm160$                                                                                                                                                                                                | $j  ightarrow \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $120 \pm 20$                                                                                                                                                          | $830 \pm 170$                                                                                                        | $1700 \pm 300$   |
| $Z(\ellar\ell)\gamma$       | $241 \pm 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $73 \pm 2$                                                                                                                                                                                          | $211 \pm 4$                                                                                                                                                                                                 | $Z(\ellar\ell)\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $240 \pm 20$                                                                                                                                                          | $71 \pm 14$                                                                                                          | $211 \pm 16$     |
| $tar{t}\gamma$              | $671 \pm 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $330 \pm 4$                                                                                                                                                                                         | $178 \pm 3$                                                                                                                                                                                                 | $tar{t}\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $590\pm150$                                                                                                                                                           | $290\pm70$                                                                                                           | $160 \pm 40$     |
| Total                       | $7750 \pm 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $22010 \pm 140$                                                                                                                                                                                     | $27180 \pm 180$                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7190 \pm 90$                                                                                                                                                         | $17280 \pm 150$                                                                                                      | $24800 \pm 1300$ |
| Data                        | 7186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17277                                                                                                                                                                                               | 23375                                                                                                                                                                                                       | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7186                                                                                                                                                                  | 17277                                                                                                                | 23375            |
|                             | Pre-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>$\bigcirc$ = $0.03-0.02$ Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02$ Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>$\bigcirc$ = $0.02$ Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02-0.01$ $\Delta\mu$ 0.01 0.02 0.03<br>$\bigcirc$ = $0.03-0.02$ Post-fit impact on $\mu$ :<br>$\bigcirc$ = $0.03-0.02$ | LF_Town of the scale Wy doct scale Trigger efficiency JET_Flavor_Composition JET_Letwor_Composition JET_RefeativeNP_1 Zγ QCD alternative PDF e→γ syst JET_Piteup_RhoTopology JTAL_1NPCOR_PLUS_UNCOR | FT_EtaIntercalibration_Modelling<br>LFT_Pileup_OffsetMu<br>LFT_Pileup_OffsetMu<br>Tty scale<br>tty Henvig7<br>JET_Etavor_Response<br>LET_JER_EffectiveNP_6<br>LET_JER_EffectiveNP_2<br>JET_Dileup_OffsetNPY | JTAL_INPCOR_PLUS_UNCOR       Z(vv)y EWK Henvig/       JET_JER_Effective NP_3       MET_SoftTiK_ResoPara       MET_SoftTiK_ResoPara       JTL_INPCOR_PLUS_UNCOR       JET_JER_Effective NP_4       VAY QCD NNPFF unc. + \alpha       WY QCD NNPFF unc. + \alpha       WY QCD NNPFF unc. + \alpha       WFT_SoftTiK_Scale       MET_SoftTiK_Scale       MET_SoftTiK_Scale       MET_SoftTiK_Scale       MET_SoftTiK_Scale | Zy EWK NNPDF unc. + α<br>Zy EWK NNPDF unc. + α<br>JET_PunchThrough_MC16<br>Zhy alternative PDF<br>Wy EWK alternative PDF<br>Wy NNPDF unc. + α<br>MUON_SAGITTA_RESBIAS | Wr EWK NNPDF unc. $+\alpha_{\rm s}$<br>Wr EWK scale $-2$ -1.5 -1 -0.5 0 0.5 1 1.5 2<br>-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 |                  |

# До фитирования в КО



## После фитирования в КО



### После фитирования данными



## Значения и погрешности ПП



К. Казакова (НИЯУ МИФИ)

## Фитирование данными



# Процедура «развёртывания»



|               | Значение                       |
|---------------|--------------------------------|
| $A_{Z\gamma}$ | $0.9157 \pm 0.0008 \pm 0.0210$ |
| $C_{Z\gamma}$ | $0.7497 \pm 0.0007 \pm 0.0577$ |

Процедура «развертывания» методом свертки заключается в следующих шагах:

• Домножение матрицы отклика  $\hat{R}$  на распределение на уровне генератора:

$$F_{ij} = R_{ij} \cdot T_j = \begin{pmatrix} \vec{r_1} \\ \vec{r_1} \\ \vdots \\ \vec{r_n} \end{pmatrix} \cdot \begin{pmatrix} t_1 \\ t_1 \\ \vdots \\ t_n \end{pmatrix} = \begin{pmatrix} \vec{f_1} \\ \vec{f_1} \\ \vdots \\ \vec{f_n} \end{pmatrix},$$

• Домножение каждой гистограммы  $\vec{f_j}$  на нормировочные коэффициенты  $\mu_j = (\mu_1, \mu_2, \dots, \mu_n)$ :

$$G_{ij} = F_{ij} \cdot \mu_j = \begin{pmatrix} \vec{f_1} \\ \vec{f_1} \\ \vdots \\ \vec{f_n} \end{pmatrix} \cdot \begin{pmatrix} \mu_1 \\ \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} \vec{g_1} \\ \vec{g_1} \\ \vdots \\ \vec{g_n} \end{pmatrix}.$$

Далее все векторы  $\vec{g}_j$  складываются. В результате можно получить одно распределение с количеством бинов m.

- Фитирование «свернутого» распределения с помощью нормировочных коэффициентов  $\mu_j$ . В результате можно получить скорректированные нормировочные коэффициенты  $\mu'_j = (\mu'_1, \mu'_2, ..., \mu'_n)$ .
- Домножение распределения на уровне генератора на скорректированные нормировочные коэффициенты  $\mu'_j = (\mu'_1, \mu'_2, \dots, \mu'_n).$

#### К. Казакова (НИЯУ МИФИ)

# <u>Процедура «развёртывания»</u>

### Доверительная область:

| Категория | Отбор                                                          | $\mathcal{L}(\sigma,\theta,\lambda) = \prod P\left[N_i   \mathcal{L}_{\text{int}} \sum \mathcal{R}_{ij}(\vec{\theta})\sigma_j(\vec{\theta}) + \mathcal{B}_i(\vec{\theta},\lambda)\right] \times \prod G(\theta_k)$ |
|-----------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Фотоны    | $E_{\mathrm{T}}^{\gamma} > 150$ ГэВ                            | $\frac{1}{i}$ $\begin{pmatrix} \sum_{j} \\ j \end{pmatrix}$ $\frac{1}{k}$                                                                                                                                          |
| Струи     | $ \eta  < 2.37$ кроме $1.37 <  \eta  < 1.52$<br>$ \eta  < 4.5$ | $N_j = \mathcal{L}_{int}\sigma_j$ with $\sigma_j = \mu_j \sigma_j^{MC}$                                                                                                                                            |
|           | $p_{\rm T} > 50 \ \Gamma$ əB<br>$\Delta B(iet \ \gamma) > 0.3$ | $\mathcal{L}(\sigma,\theta,\lambda) = \mathcal{L}(\sigma,\theta,\lambda)_{\text{noreg.}} \times \left(-\frac{\tau^2}{2}\sum_{i=1}^{i+2 < N_{\text{bins}}} ((\mu_i - \mu_{i-1}) - (\mu_{i+1} - \mu_i))^2\right)$    |
| Лептоны   | $\frac{\Delta N_l = 0}{N_l = 0}$                               | $\left(\begin{array}{c} 2 \\ i=2 \end{array}\right)$                                                                                                                                                               |
| Нейтрино  | $p_{\mathrm{T}}^{ u u} > 130 \ \Gamma$ əB                      | $\sigma_j$ N j                                                                                                                                                                                                     |
| События   | $ \Delta \phi(ec{p}_{ m T}^{ m miss},\gamma) >0.6$             | $\frac{1}{\Delta x_i} = \frac{1}{(\int \int dt) \cdot \Delta x_i}$                                                                                                                                                 |
|           | $ \Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, j_1)  > 0.3$ | $= j  (j \geq a_i)  \Delta x_j$                                                                                                                                                                                    |
|           | Значимость $p_{\rm T}^{ uar{ u}} > 11$                         |                                                                                                                                                                                                                    |

Биннинг

### <u>Расширенная</u> ловерительная область:

| Переменная                       | Биннинг                                                                 | <u>доверительная область:</u> |                                       |
|----------------------------------|-------------------------------------------------------------------------|-------------------------------|---------------------------------------|
| $p_{\mathrm{T}}^{\gamma}$        | [150, 200], [200, 250], [250, 350], [350, 450], [450, 600], [600, 1100] | Категория                     | Отбор                                 |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ | [130, 200], [200, 250], [250, 350], [350, 450], [450, 600], [600, 1100] | Фотоны                        | $E_{\rm T}^{\gamma} > 150$ ГэВ        |
| $N_{ m jets}$                    | [-0.5, 0.5], [0.5, 1.5], [1.5, 2.5], [2.5, 7.5]                         |                               | $ \eta  < 2.37$                       |
| $\eta_\gamma$                    | [-2.5 2.5], 10 бинов                                                    | Струи                         | $ \eta  < 4.5$                        |
| $p_T^{j_1}$                      | [50, 100, 150, 250, 350, 450, 600, 1100]                                |                               | $p_{\mathrm{T}} > 50$ ГэВ             |
| $p_T^{\overline{j_2}}$           | [50, 100, 150, 250, 350, 450, 600, 1100]                                |                               | $\Delta R(jet, \gamma) > 0.3$         |
|                                  |                                                                         | Нейтрино                      | $p_{\mathrm{T}}^{ uar{ u}} > 130$ ГэВ |

#### К. Казакова (НИЯУ МИФИ)

# Процедура «развёртывания»



К. Казакова (НИЯУ МИФИ)

ВКР магистра 28.06.2024

# Валидационный тест А



К. Казакова (НИЯУ МИФИ)

# Валидационный тест В



К. Казакова (НИЯУ МИФИ)