МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 539.17, 539.12.01

На правах рукописи

ЮШИН ВЛАДИСЛАВ ОЛЕГОВИЧ

БФКЛ СПЕКТР В КХД И $\mathcal{N} = 4$ СУПЕРСИММЕТРИЧНАЯ ТЕОРИЯ ЯНГ-МИЛСА

Направление подготовки 14.04.02 «Ядерная физика и технологии» Диссертация на соискание степени магистра

Научный руководитель, к.ф.-м.н.

_____ М. Н. Алфимов

Москва2024

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТРА

БФКЛ СПЕКТР В КХД И $\mathcal{N}=4$ СУПЕРСИММЕТРИЧНАЯ ТЕОРИЯ ЯНГ-МИЛСА

Студент	В. О. Юшин
Научный руководитель,	
к.фм.н.	М. Н. Алфимов
Рецензент,	
к.фм.н.	А. В. Литвинов
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов
Рук. учеб. прог.,	
д.фм.н., проф.	М. Д. Скорохватов

СОДЕРЖАНИЕ

Bı	ведение	4
1	Рассеяние при высоких энергиях	7
2	Померон и Оддерон	9
3	Решение уравнений QSC	11
	3.1 Оддерон с Р -функциями определённой чётности	12
	3.2 Оддерон с Р -функциями без определённой чётности	28
Зғ	аключение	31
A	μ в NLO	32
В	Саблидирующее уравнение Бакстера 4-го порядка	34
Cı	писок литературы	36

ВВЕДЕНИЕ

Существуют экспериментальные данные [1; 2] из которых феноменологически делается вывод о росте полного сечения $\sigma_{tot} \sim s^{\alpha-1}$ с ростом энергии [3]. В качестве объяснения был предложен обмен некоторой квазичастицей с характеристикой α , интерсепт, и назван Померон. Это сыграло важную роль для понимания высокоэнергетического упругого рассеяния в квантовой теории поля (КТП). Для объяснения несоответствия между адрон-адронным и адрон-антиадронным рассеянием при высоких энергиях был ещё введён Оддерон [4–6]. В недавних измерениях было подтверждено это расхождение [7–9] и Оддерон считается открытым. Используя FMO приближение были получены интерсепты для Померона и Оддерона без учёта и с учётом кулоновских членов [10]. Основываясь на экспериментальных данных [11], рисунок 1, можно взять логарифм σ и получить линейный график, его наклон и будет искомым α , рисунок 2. В данной работе делаются некоторые шаги, чтобы найти этот наклон теоретически и сравнить с экспериментальными данными.

Теоретически, в рамках квантовой хромодинамики (КХД), это сделать очень нелегко, есть лишь ограниченные известные результаты. Интересен режим, когда КХД близко к пертурбативному приближению, поэтому исследуется только режим при больших s (энергии $\gg \Lambda_{QCD} \sim 200$ МэВ). В рамках КХД, даже в асимптотически свободном режиме, с помощью теории возмущений, в старших порядках по константе связи диаграммы становятся слишком сложными, аналитически посчитать их не удаётся. Вычисление интерсепта в КХД привело к уравнению БФКЛ (Балицкий-Фадин-Кураев-Липатов), которое суммирует все ведущие логарифмические вклады [12–14].

Рисунок 1 — Экспериментальные данные зависимости полного сечения σ_{tot} от $s^{1/2}$ для pp столкновений.

Рисунок 2 — Экспериментальные точки в осях $Ln(\sigma_{tot})$ и $Ln(s^{1/2})$ можно фитировать прямой, наклон этой линии и будет искомым интерсептом α .

Существует $\mathcal{N} = 4$ теория Супер-Янга-Миллса (SYM), она играет важную роль в нашем понимании квантовых теорий поля, особенно в контексте AdS/CFT. $\mathcal{N} = 4$ SYM – это четырехмерная калибровочная теория, она хоть и не есть в точности КХД, зато она обладает рядом замечательных свойств, например: она является конформной (не зависит от масштаба), суперсимметричной, интегрируемой, поэтому множество величин в ней можно посчитать аналитически. Установлены связи между $\mathcal{N} = 4$ SYM и КХД, в частности, принцип максимальной трансцендентности Котикова-Липатова [15–17]. Принцип заключается в том, что некоторый результат, полученные в $\mathcal{N} = 4$ – это строго определенный кусок ответа для той же величины из КХД. Если вычислять показатель степени α в КХД, то его максимально трансцендентальная часть это то же самое, как если бы эта величина была вычислена в $\mathcal{N} = 4$ SYM.

В $\mathcal{N} = 4$ SYM существует инструмент, который позволяет нам непертурбативно находить величины – Квантовая Спектральная Кривая (QSC). Если есть интересующий нас оператор, то в квантовую спектральную кривую можно подставить квантовые числа этого оператора (твист-2 оператор для Померона и твист-3 для Оддерона). Фундаментальное понимание Оддерона по-прежнему отсутствует и требуется изучения механизмов, лежащих в его основе. Основываясь на всём вышеописанном будет построен путь исследования Оддерона.

1. РАССЕЯНИЕ ПРИ ВЫСОКИХ ЭНЕРГИЯХ

Полное сечение $\sigma(s)$ высокоэнергетического рассеяния двух бесцветных частиц A и B может быть записано в терминах факторов адронизации $\Phi_i(q_i)$ как:

$$\sigma(s) = \int \frac{d^2q \ d^2q'}{(2\pi)^2 \ q^2 \ q'^2} \ \Phi_A(q) \ \Phi_B(q') \int_{a-i\infty}^{a+i\infty} \frac{d\omega}{2\pi i} \left(\frac{s}{s_0}\right)^{\omega} G_{\omega}(q,q'), \tag{1.1}$$

где $G_{\omega}(q,q') - t$ -канальная парциальная волна глюон-глюонного рассеяния, $s_0 = |q||q'|$, зависит от поперечных импульсов, и $s = 2p_A p_B$, где p_A и $p_B - 4$ импульсы частиц A и B соответственно. Для парциальной волны t-канала справедливо следующее уравнение Бете-Салпитера

$$\omega G_{\omega}(q,q_1) = \delta^{D-2}(q-q_1) + \int d^{D-2}q_2 K(q,q_2) G_{\omega}(q_2,q_1), \qquad (1.2)$$

где ω являются собственными значениями, а $K(q_1, q_2) - \mathbb{Б}\Phi K \Pi$ ядро интегрального уравнения. Уравнение (1.2) на G_{ω} связано с лестницами из глюонов, показанных на рисунке 3.

Рисунок 3 — С точки зрения суммирования лестниц глюонов: Померон – суммирование лестниц с двумя вертикальными ногами, а Оддерон – суммирования лестниц с тремя вертикальными линиями.

2. ПОМЕРОН И ОДДЕРОН

Собственные значения уравнения (1.2) зависят от ω , которые в свою очередь классифицируются набором чисел. Есть разные классы решений уравнения Бете-Салпитера. Первый класс классифицируется двумя квантовыми числами: $\omega = \omega(n, \nu)$, целое n (конформный спин) и вещественное ν . Этот класс решений называется – Померон. Значение ω при n = 0 и $\nu = 0$ определяет поведение $\sigma(s)$ при $s \to \infty$. Второй класс решений зависит от трёх квантовых чисел – Оддерон. Аналогично, значения квантовых чисел из ω влияет на поведение сечения.

Вычислить эти величины в рамках КХД при высоких порядках по константе связи сложно (у нас есть только диаграммная техника). Но у нас есть принцип максимальной трансцендентальности, который утверждает, что определенная часть ответа из КХД совпадает с ответом в $\mathcal{N} = 4$ SYM. Локальные операторы в $\mathcal{N} = 4$ SYM имеют квантовые числа $(J_1, J_2, J_3, \Delta, S_1, S_2).$

Задача вычисления ω для Померона эквивалентна вычисления $S_1 + 1$ при квантовых числах $J_1 = 2$, $J_2 = J_3 = 0$ и $S_2 = n$. Числа ν и Δ связаны формулой: $\nu = -i\Delta/2$. Т.е. аналогом нахождения $\omega(n, \nu)$ в рамках высокоэнергетического рассеяния в КХД будет являться нахождение $S_1(\Delta, S_2)$ в $\mathcal{N} = 4$ SYM. Аналогичная связь существует для ω в случае Оддеронного состояния.

Одним из основных аспектов интегрируемости $\mathcal{N} = 4$ SYM является описание плоского спектра в терминах конечного набора функциональных уравнений, известных как Квантовая Спектральная Кривая (QSC). QSC сопоставлен уникальный набор функций $P_a(u)$ и $Q_i(u)$ (с a, i = 1, ..., 4), которые имеют фиксированную аналитическую структуру и удовлетворяют множеству связанных разностных уравнений, называемых QQ-системой.

Режим БФКЛ для Померона определяется, когда спин $S_1 \to -1$, константа связи $g \equiv \sqrt{\lambda}/(4\pi) \to 0$ и отношение $\Lambda \equiv g^2/(S_1 + 1)$ является конечным. Приближение БФКЛ в лидирующем порядке соответствует суммированию всех степеней $[g^2/(S_1+1)]^n$. Приведенная выше λ – константа 'т Хофта. Результат связи S_1 и Δ в $\mathcal{N} = 4$ SYM:

$$S_1 + 1 = 4g^2 \left[-\psi \left(\frac{1}{2} - \frac{\Delta}{2} \right) - \psi \left(\frac{1}{2} + \frac{\Delta}{2} \right) + 2\psi(1) + \mathcal{O}(g^2) \right], \quad (2.1)$$

где $\psi(x) = \Gamma'(x)/\Gamma(x)$ – полигамма-функция первого порядка. Для Оддерона подобно, но $S_1 \to -2$, $\Lambda \equiv g/(S_1+2)$ и $[g/(S_1+2)]^n$.

3. РЕШЕНИЕ УРАВНЕНИЙ QSC

Для физических состояний все *Q*-функции имеют асимптотику при больших *u*:

$$\begin{aligned} \boldsymbol{P}_{a} &\sim A_{a} u^{-\tilde{M}_{a}} , \qquad & \boldsymbol{P}^{a} &\sim A^{a} u^{\tilde{M}_{a}-1} , \qquad (3.1) \\ \boldsymbol{Q}_{i} &\sim B_{i} u^{\hat{M}_{i}-1} , \qquad & \boldsymbol{Q}^{i} &\sim B^{i} u^{-\hat{M}_{i}} . \end{aligned}$$

Некоторые параметры \tilde{M}_a и \hat{M}_i определяются, как показано ниже:

$$\tilde{M}_{a} = \left(\frac{J_{1} + J_{2} - J_{3} + 2}{2}, \frac{J_{1} - J_{2} + J_{3}}{2}, \frac{-J_{1} + J_{2} + J_{3} + 2}{2}, \frac{-J_{1} - J_{2} - J_{3}}{2}\right),$$

$$\hat{M}_{i} = \left(\frac{\Delta - S_{1} - S_{2} + 2}{2}, \frac{\Delta + S_{1} + S_{2}}{2}, \frac{-\Delta - S_{1} + S_{2}}{2}, \frac{-\Delta + S_{1} - S_{2}}{2}\right).$$
(3.2)
$$(3.3)$$

P- и **Q**-функции по крайней мере имеют квадратичные точки ветвления при $u = \pm 2g$. Из асимптотик (3.1) можно ожидать, что разрезы **P**функций будут короткими. Минимальный выбор для функций $P_a(u)$ и $P^a(u), a = 1, ..., 4$ – иметь только один короткий разрез на действительной оси. Из асимптотики **Q**-функций приходится считать разрезы этих функций длинными. Итак, минимальный выбор для $Q_i(u)$ и $Q^i(u), i = 1, ..., 4$ – это иметь только один длинный разрез на действительной оси. Аналитическая структура **P**- и **Q**-функций представлена на рисунке 4.

Рисунок 4 — Естественное предположение об аналитической структуре *Q*-функций на определяющем листе.

3.1 ОДДЕРОН С *Р*-ФУНКЦИЯМИ ОПРЕДЕЛЁННОЙ ЧЁТНОСТИ

В общем виде параметризация *P*-функций даётся формулой (разложение в ряд Лорана):

$$\boldsymbol{P}_{a} = x^{-\tilde{M}_{a}} \left(g^{-\tilde{M}_{a}} A_{a} + \sum_{k=1}^{+\infty} \frac{c_{a,2k}}{x^{2k}} \right) .$$
(3.4)

После введения параметризация $g \equiv \Lambda w$ предыдущую формулу можно переписать:

$$\boldsymbol{P}_{a} = x^{-\tilde{M}_{a}} \left((\Lambda w)^{-\tilde{M}_{a}} A_{a} + \sum_{k=1}^{+\infty} \frac{c_{a,2k}}{x^{2k}} \right) .$$
(3.5)

Переменная Жуковского:

$$x(u) = \frac{u + \sqrt{u - 2g}\sqrt{u + 2g}}{2g} = \frac{u + \sqrt{u^2 - 4g^2}}{2g} , \qquad (3.6)$$

после подстановки параметризацию для g, получаем:

$$x(u) = \frac{u + \sqrt{u^2 - 4(\Lambda w)^2}}{2\Lambda w} .$$
 (3.7)

Состояние определяется следующими зарядами:

$$J_1 = 3 , J_2 = 0 , J_3 = 0 , (3.8)$$

$$S_1 = S = w - 2 , S_2 = 0 , \Delta = 3 + S + \mathcal{O}(g^2) ,$$

подставляя их, параметры \tilde{M}_a и \hat{M}_i принимают вид:

$$\tilde{M}_a = \left(\frac{5}{2}, \frac{3}{2}, -\frac{1}{2}, -\frac{3}{2}\right) , \qquad (3.9)$$

$$\hat{M}_i = \left(\frac{\Delta - w + 4}{2}, \frac{\Delta + w - 2}{2}, \frac{-\Delta - w + 4}{2}, \frac{-\Delta + w - 2}{2}\right)$$
. (3.10)

Коэффициенты A_a и B_j задаются в виде:

$$A_a = (A_1, A_2, A_3, A_4) , \qquad (3.11)$$

$$B_j = (B_1, B_2, B_3, B_4) \quad . \tag{3.12}$$

Константы A_a и B_j явно выражаются через \tilde{M}_a и \hat{M}_j (без суммирования по a (для $A^a A_a$) и j (для $B^j B_j$)):

$$\mathbf{A}_{a} = A^{a}A_{a} = i\frac{\Pi_{j}(\tilde{M}_{a} - \tilde{M}_{j})}{\Pi_{b \neq a}(\tilde{M}_{a} - \tilde{M}_{b})} , \quad \mathbf{B}_{j} = B^{j}B_{j} = i\frac{\Pi_{a}(\tilde{M}_{j} - \tilde{M}_{a})}{\Pi_{k \neq j}(\tilde{M}_{j} - \tilde{M}_{k})} . \quad (3.13)$$

Тогда, подставив заряды (3.8), можно получить выражения:

$$A^{1}A_{1} = -A^{4}A_{4} = \frac{i}{192} \cdot (-1 + \Delta - w)(7 + \Delta - w) \cdot \qquad (3.14)$$
$$\cdot (-7 + \Delta + w)(1 + \Delta + w) ,$$
$$A^{2}A_{2} = -A^{3}A_{3} = -\frac{i}{96} \cdot (1 + \Delta - w)(5 + \Delta - w) \cdot \qquad (3.15)$$
$$\cdot (-5 + \Delta + w)(-1 + \Delta + w) .$$

Согласно лево-правой симметрии для \boldsymbol{P} -функций

$$\boldsymbol{P}^{a} = \chi^{ac} \boldsymbol{P}_{c} , \qquad \chi = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} , \qquad (3.16)$$

откуда получаются следующие соотношения для **Р**-функций:

$$P^4 = P_1$$
, $P^3 = -P_2$. (3.17)

Т.к. определяющим членом для P_a является A_a равно как и A^a для P^a , то можно совершить замену $A^4 \to A_1$ и $A^3 \to -A_2$. Наименьшим порядком

для A_a является w^0 . Есть возможность положить $A_1 = A_2 = 1$, тогда:

$$\mathbf{A}_1 = -\mathbf{A}_4 = -A_1 A_4 = -A_4 = \mathcal{O}(w^0) , \qquad (3.18)$$

$$\mathbf{A}_2 = -\mathbf{A}_3 = A_2 A_3 = A_3 = \mathcal{O}(w^0) .$$
(3.19)

Можно сделать вывод о виде коэффициентов A_a :

$$A_a = (1, 1, -\mathbf{A}_3, \mathbf{A}_4) , \qquad (3.20)$$

или, записывая иначе, A_a принимаю вид

$$A_a = (1, 1, A_3, A_4) \quad . \tag{3.21}$$

Значения для \tilde{M}_a (3.9) и A_a (3.21) в P_a (3.5), это приводит к следующим уравнениям:

$$\begin{aligned} \boldsymbol{P}_{1} &= \frac{1}{(\Lambda wx)^{5/2}} + \sum_{k=1}^{+\infty} \frac{c_{1,2k}}{x^{2k+5/2}} , \end{aligned} \tag{3.22} \\ \boldsymbol{P}_{2} &= \frac{1}{(\Lambda wx)^{3/2}} + \sum_{k=1}^{+\infty} \frac{c_{2,2k}}{x^{2k+3/2}} , \\ \boldsymbol{P}_{3} &= A_{3} (\Lambda wx)^{1/2} + \sum_{k=1}^{+\infty} \frac{c_{3,2k}}{x^{2k-1/2}} , \\ \boldsymbol{P}_{4} &= A_{4} (\Lambda wx)^{3/2} + \sum_{k=1}^{+\infty} \frac{c_{4,2k}}{x^{2k-3/2}} . \end{aligned}$$

Для P-функций существует H-симметрия, которая даёт возможность прибавлять к быстрорастущим функциям медленнорастущие с ко-

эффициентом, т.е. можно:

$$\begin{aligned} \boldsymbol{P}_2 &\to \boldsymbol{P}_2 + \delta_1 \boldsymbol{P}_1 , \qquad (3.23) \\ \boldsymbol{P}_3 &\to \boldsymbol{P}_3 + \delta_2 \boldsymbol{P}_2 , \\ \boldsymbol{P}_3 &\to \boldsymbol{P}_3 + \delta_3 \boldsymbol{P}_1 , \\ &\dots \end{aligned}$$

Есть возможность эффективно сократить член содержащий $c_{4,4}$, если учесть $\mathbf{P}_4 \rightarrow \mathbf{P}_4 + \alpha \mathbf{P}_1$ и положить $\alpha = -c_{4,4} g^{5/2}$. Аналогично можно убрать слагаемое с $c_{3,2}$, если применить $\mathbf{P}_3 \rightarrow \mathbf{P}_3 + \beta \mathbf{P}_2$, положив $\beta = -c_{3,2} g^{3/2}$. Раз так, то можно установить $c_{3,2} = c_{4,4} = 0$.

Разложение для переменной Жуковского при $w \to 0$:

$$x(u) = \frac{u}{\Lambda w} - \frac{\Lambda w}{u} - \frac{(\Lambda w)^3}{u^3} + \dots$$
(3.24)

Предполагается, что скейлинг **P**-функции, т.е. её минимальный порядок, для всех членов одинаков и определяется первым членом. Минимальный порядок лидирующего члена $\mathcal{O}(w^0)$. Для остальных членов минимальным будет $\mathcal{O}\left(c_{a,2k} \cdot w^{\tilde{M}_a+2k}\right)$, тогда получаем:

$$c_{a,2k} = \mathcal{O}\left(w^{-\tilde{M}_a - 2k}\right) . \tag{3.25}$$

Можно ввести аналитическое продолжение для P-функции: $\tilde{P}(x) \equiv P(1/x)$. Для \tilde{P} -функции также предполагается, что скейлинг определяется первым членом и одинаков для всех. Для лидирующего члена $\mathcal{O}(w^{-2\tilde{M}_a})$, минимальным он будет у \tilde{P}_1 , т.е. $\mathcal{O}(w^{-5})$. Для остальных членов минимальным будет $\mathcal{O}\left(c_{a,2k} \cdot w^{-\tilde{M}_a-2k}\right)$. Такое условие приводит к:

$$c_{a,2k} = \mathcal{O}\left(w^{\tilde{M}_a + 2k - 5}\right) . \tag{3.26}$$

Почти для всех k (1 ... $+\infty$) и a (1 ... 4) степень w в (3.26) больше степени в (3.25). Это приводит к параметризации для коэффициентов $c_{a,2k}$ (ряд по

степеням w):

$$c_{a,2k} = (\Lambda w)^{2k + \tilde{M}_a - 5} \sum_{m=0}^{+\infty} c_{a,2k}^{(m)} w^m .$$
(3.27)

Исключениями являются $c_{3,2}^{(0)}$, $c_{3,2}^{(1)}$, $c_{4,2}^{(0)}$, $c_{4,2}^{(1)}$, $c_{4,2}^{(2)}$ и $c_{4,2}^{(3)}$. Условие (3.25) приводит к $c_{3,2}^{(0)} = c_{3,2}^{(1)} = c_{4,2}^{(0)} = c_{4,2}^{(1)} = c_{4,2}^{(2)} = c_{4,2}^{(3)} = 0$.

БФКЛ режим: $g \to 0 \Rightarrow w \to 0$. Выражение для *P*-функции в пертурбативном режиме:

$$\boldsymbol{P}_{a} = \sum_{k=0}^{+\infty} \boldsymbol{P}_{a}^{(k)} g^{k} = \sum_{k=0}^{+\infty} \boldsymbol{P}_{a}^{(k)} w^{k} . \qquad (3.28)$$

Можно предположить, что если пойти под разрез, результат \tilde{P}_a можно выразить как линейную комбинацию исходных P-функций

$$\tilde{\boldsymbol{P}}_a = \mu_{ab} \chi^{bc} \boldsymbol{P}_c \; . \tag{3.29}$$

Поскольку μ_{ab} *i*-периодична на листе с длинными разрезами, аналитическое продолжение μ_{ab} на листе с короткими разрезами задается соотношением

$$\tilde{\mu}_{ab}(u) = \mu_{ab}(u+i) .$$
(3.30)

Получается, что $\tilde{\mu}_{ab}(u)$ имеет ту же структуру разрезов, что и $\mu_{ab}(u)$. Для различия между версией с коротким / длинным разрезом одной и той же функции будет использована шляпа (hat) / галочка (check) над символом μ . Так же в дальнейшем будет использовано дополнительное обозначение $\mu_{ab}^+(u) = \mu_{ab}(u + i/2)$. Тогда для $\check{\mu}_{ab}$ имеется *i*-периодическое условие

$$\check{\mu}_{ab}(u+i) = \check{\mu}_{ab}(u) . \tag{3.31}$$

Для аналитического продолжения под всеми разрезами можно записать уравнение *Р*µ-системы:

$$\tilde{\mu}_{ab} - \mu_{ab} = \boldsymbol{P}_a \tilde{\boldsymbol{P}}_b - \boldsymbol{P}_b \tilde{\boldsymbol{P}}_a . \qquad (3.32)$$

при этом $\mu_{23} = \mu_{14}$. Из двух предыдущих уравнений можно получить линейное разностное уравнение на $\hat{\mu}_{ab}$

$$\hat{\mu}_{ab}^{++} = \hat{\mu}_{ab} + \boldsymbol{P}_a \hat{\mu}_{bc} \boldsymbol{P}^c - \boldsymbol{P}_b \hat{\mu}_{ac} \boldsymbol{P}^c . \qquad (3.33)$$

Нулевой порядок разложения \boldsymbol{P} -функций (LO, при w^0) имеет вид:

$$\begin{aligned} \boldsymbol{P}_{1}^{(0)} &= \frac{1}{u^{5/2}} , \qquad (3.34) \\ \boldsymbol{P}_{2}^{(0)} &= \frac{1}{u^{3/2}} , \\ \boldsymbol{P}_{3}^{(0)} &= A_{3}^{(0)} u^{1/2} + \frac{3c_{3,2}^{(0)}}{2u^{7/2}} + \frac{c_{3,2}^{(2)}}{\Lambda^{2}u^{3/2}} , \\ \boldsymbol{P}_{4}^{(0)} &= A_{4}^{(0)} u^{3/2} + \frac{7c_{4,2}^{(0)}}{8u^{9/2}} + \frac{c_{4,4}^{(0)}}{u^{5/2}} + \frac{c_{4,2}^{(2)}}{2\Lambda^{2}u^{5/2}} + \frac{c_{4,2}^{(4)}}{\Lambda^{4}u^{1/2}} . \end{aligned}$$

При этом коэффициенты $A_3^{(0)}$ и $A_4^{(0)}$ принимают следующие значения:

$$A_3^{(0)} = \frac{(\Delta^2 - 1) \cdot (\Delta^2 - 25)}{96 \ i} , \qquad A_4^{(0)} = \frac{(\Delta^2 - 1) \cdot (\Delta^2 - 49)}{192 \ i} . \tag{3.35}$$

Согласно разложению пертурбативного решения вокруг S=-2, можно считать, что асимптотики μ -функций имеют вид:

$$(\mu_{12},\mu_{13},\mu_{14},\mu_{24},\mu_{34}) \sim (u^0, u^2, u^3, u^4, u^6) e^{2\pi|u|}$$
 (3.36)

Поэтому этой асимптотике можно поставить в соответствие следующий

анзац:

$$\mu_{12}^{(0)+} = w^{-5} \ b_{1,1} \mathcal{P}(u) , \qquad (3.37)$$

$$\mu_{13}^{(0)+} = w^{-5} \ (b_{2,1}u^2 + b_{2,2}) \mathcal{P}(u) , \qquad (3.37)$$

$$\mu_{14}^{(0)+} = w^{-5} \ (b_{3,1}u^3 + b_{3,2}u) \mathcal{P}(u) , \qquad (3.37)$$

$$\mu_{24}^{(0)+} = w^{-5} \ (b_{3,1}u^3 + b_{3,2}u) \mathcal{P}(u) , \qquad (3.37)$$

$$\mu_{24}^{(0)+} = w^{-5} \ (b_{3,1}u^4 + b_{4,2}u^2 + b_{4,3}) \mathcal{P}(u) , \qquad (3.37)$$

где $\mathcal{P}(u)$ – *i*-периодическая функция. После подстановки (3.32) можно зафиксировать полиномиальную часть, выразив все коэффициенты *b* через единственный $b_{1,1}$. Также фиксируется оставшийся коэффициент в LO *P*функциях $c_{4,2}^{(4)}$:

$$c_{4,2}^{(4)} = -i\frac{(\Delta^2 - 1)^2\Lambda^4}{192} . (3.38)$$

Исходя из описанного выше, можно переопределить функцию $\mathcal{P}(u)$, включив в неё функцию $b_{1,1}$. Результат этого будет выглядеть так:

$$\mu_{12}^{(0)+} = w^{-5} \mathcal{P}(u) , \qquad (3.39)$$

$$\mu_{13}^{(0)+} = -w^{-5} \frac{i(\Delta^2 - 1)^2}{32} \left(u^2 - \frac{1}{12} \right) \mathcal{P}(u) , \qquad (4.39)$$

$$\mu_{14}^{(0)+} = -w^{-5} \frac{i(\Delta^2 - 1)^2}{48} u \left(u^2 + \frac{1}{4} \right) \mathcal{P}(u) , \qquad (4.39)$$

$$\mu_{24}^{(0)+} = -w^{-5} \frac{i(\Delta^2 - 1)^2}{64} \left(u^2 + \frac{1}{4} \right)^2 \mathcal{P}(u) , \qquad (4.39)$$

$$\mu_{34}^{(0)+} = -w^{-5} \frac{i(\Delta^2 - 1)^4}{18432} \left(u^2 - \frac{3}{4} \right) \left(u^2 + \frac{1}{4} \right)^2 \mathcal{P}(u) .$$

Теперь осталось определить периодическую функию $\mathcal{P}(u)$. Учитывая знакопеременность μ -функций, можно написать минимальный анзац для этой функции:

$$\mathcal{P}(u) = C_1 \exp(2\pi u) + C_2 \exp(-2\pi u) + C_3 . \qquad (3.40)$$

Пользуясь аналитической структурой разрезов для P-функций, условием *i*-периодичности μ -функций, а также уравнением $\tilde{P}_1 = \mu_{1b} P^b$, можно получить:

$$C_1 = -\frac{i}{\pi^2 \Lambda^5 (\Delta^2 - 1)}$$
, $C_2 = C_1$, $C_3 = -C_1 - C_2$. (3.41)

Подводя итог LO решения $\boldsymbol{P}\mu$ -системы с учётом ограничений, наложенных на $c_{a,2k}^{(m)}$, и выражений для $A^{(0)}$ (3.35) получаются следующие $\boldsymbol{P}^{(0)}$ -функции:

$$\begin{aligned} \boldsymbol{P}_{1}^{(0)} &= \frac{1}{u^{5/2}} , \qquad (3.42) \\ \boldsymbol{P}_{2}^{(0)} &= \frac{1}{u^{3/2}} , \\ \boldsymbol{P}_{3}^{(0)} &= -i \frac{(\Delta^{2} - 1)(\Delta^{2} - 25)}{96} u^{1/2} , \\ \boldsymbol{P}_{4}^{(0)} &= -i \frac{(\Delta^{2} - 1)(\Delta^{2} - 49)}{192} u^{3/2} - i \frac{(\Delta^{2} - 1)^{2}}{192} u^{-1/2} , \end{aligned}$$

и выражения для *µ*-функций:

$$\mu_{12}^{(0)+} = w^{-5} \frac{4i}{\pi^2 (\Delta^2 - 1)\Lambda^5} \cosh^2(\pi u) , \qquad (3.43)$$

$$\mu_{13}^{(0)+} = w^{-5} \frac{\Delta^2 - 1}{8\pi^2 \Lambda^5} \left(u^2 - \frac{1}{12} \right) \cosh^2(\pi u) ,$$

$$\mu_{14}^{(0)+} = w^{-5} \frac{\Delta^2 - 1}{12\pi^2 \Lambda^5} u \left(u^2 + \frac{1}{4} \right) \cosh^2(\pi u) ,$$

$$\mu_{24}^{(0)+} = w^{-5} \frac{\Delta^2 - 1}{16\pi^2 \Lambda^5} \left(u^2 + \frac{1}{4} \right)^2 \cosh^2(\pi u) ,$$

$$\mu_{34}^{(0)+} = -w^{-5} \frac{i(\Delta^2 - 1)^3}{4608\pi^2 \Lambda^5} \left(u^2 - \frac{3}{4} \right) \left(u^2 + \frac{1}{4} \right)^2 \cosh^2(\pi u) .$$

Следующий порядок разложения $\boldsymbol{P}\text{-} \boldsymbol{\varphi}$ ункций (NLO, при $w^1)$ имеет

вид:

$$\begin{aligned} \boldsymbol{P}_{1}^{(1)} &= 0 , \qquad (3.44) \\ \boldsymbol{P}_{2}^{(1)} &= 0 , \\ \boldsymbol{P}_{3}^{(1)} &= A_{3}^{(1)} u^{1/2} + \frac{3c_{3,2}^{(1)}}{2u^{7/2}} + \frac{c_{3,2}^{(3)}}{\Lambda^{2} u^{3/2}} , \\ \boldsymbol{P}_{4}^{(1)} &= A_{4}^{(1)} u^{3/2} + \frac{7c_{4,2}^{(1)}}{8u^{9/2}} + \frac{c_{4,4}^{(1)}}{u^{5/2}} + \frac{c_{4,2}^{(3)}}{2\Lambda^{2} u^{5/2}} + \frac{c_{4,2}^{(5)}}{\Lambda^{4} u^{1/2}} . \end{aligned}$$

При этом коэффициенты $A_3^{(1)}$
и $A_4^{(1)}$ выглядят, как показано ниже:

$$A_3^{(1)} = \frac{(\Delta^2 - 5)}{8 i} , \qquad A_4^{(1)} = \frac{(\Delta^2 + 7)}{16 i} .$$
 (3.45)

Все коэффициенты $c_{a,2k}^{(m)}$, за исключением одного, равны нулю из-за ограничений наложенных ранее. Один оставшийся коэффициент в NLO \boldsymbol{P} функциях $c_{4,2}^{(5)}$:

$$c_{4,2}^{(5)} = i \frac{(\Delta^2 - 1)\Lambda^4}{16} . (3.46)$$

Вид μ -функций приведён в А. В итоге NLO решение $\boldsymbol{P}\mu$ -системы задаётся \boldsymbol{P} -функциями

$$\begin{aligned} \boldsymbol{P}_{1}^{(1)} &= 0 , \qquad (3.47) \\ \boldsymbol{P}_{2}^{(1)} &= 0 , \\ \boldsymbol{P}_{3}^{(1)} &= -i \frac{(\Delta^{2} - 5)}{8} u^{1/2} , \\ \boldsymbol{P}_{4}^{(1)} &= -i \frac{(\Delta^{2} + 7)}{16} u^{3/2} + i \frac{(\Delta^{2} - 1)}{16} u^{-1/2} . \end{aligned}$$

При изменении квантовых зарядов на

$$J_1 = 3 , J_2 = 0 , J_3 = 0 , (3.48)$$

$$S_1 = S = w - 2 , S_2 = n , \Delta = 3 + S + \mathcal{O}(g^2) ,$$

получается, что для LO \boldsymbol{P} -функций изменяются только $A_a^{(0)}$:

$$A_{3}^{(0)} = \frac{((\Delta + n)^{2} - 1) \cdot ((\Delta - n)^{2} - 25)}{96 i} , \qquad (3.49)$$
$$A_{4}^{(0)} = \frac{((\Delta + n)^{2} - 1) \cdot ((\Delta - n)^{2} - 49)}{192 i} .$$

При фиксации полиномиальной части в анзаце для μ -функций, все b по-прежнему выражаются через единственную $b_{1,1}$, однако теперь имеют немного другие значения. Оставшийся свободный коэффициент в LO \boldsymbol{P} -функциях $c_{4,2}^{(4)}$ принимает вид:

$$c_{4,2}^{(4)} = -i \frac{((\Delta^2 - 1)^2 + n^4 - 2n^2(\Delta^2 + 1))\Lambda^4}{192} .$$
(3.50)

Фиксация коэффициентов в $\mathcal{P}(u)$ даёт:

$$C_1 = -\frac{i}{\pi^2 \Lambda^5 ((\Delta - n)^2 - 1)}$$
, $C_2 = C_1$, $C_3 = -C_1 - C_2$. (3.51)

Итогом решения LO $\boldsymbol{P}\mu$ -системы, с учётом вышеизложенного, будут \boldsymbol{P} -функции:

$$\begin{aligned} \boldsymbol{P}_{1}^{(0)} &= \frac{1}{u^{5/2}} , \qquad (3.52) \\ \boldsymbol{P}_{2}^{(0)} &= \frac{1}{u^{3/2}} , \\ \boldsymbol{P}_{3}^{(0)} &= -i \frac{((\Delta + n)^{2} - 1) \cdot ((\Delta - n)^{2} - 25)}{96} u^{1/2} , \\ \boldsymbol{P}_{4}^{(0)} &= -i \frac{((\Delta + n)^{2} - 1) \cdot ((\Delta - n)^{2} - 49)}{192} u^{3/2} - \\ &- i \frac{((\Delta^{2} - 1)^{2} + n^{4} - 2n^{2}(\Delta^{2} + 1))}{192} u^{-1/2} , \end{aligned}$$

и *µ*-функции:

$$\mu_{12}^{(0)+} = w^{-5} \frac{4i}{\pi^2 ((\Delta - n)^2 - 1)\Lambda^5} \cosh^2(\pi u) , \qquad (3.53)$$

$$\mu_{13}^{(0)+} = w^{-5} \frac{(\Delta + n)^2 - 1}{8\pi^2 \Lambda^5} \left(u^2 - \frac{1}{12} \right) \cosh^2(\pi u) ,$$

$$\mu_{14}^{(0)+} = w^{-5} \frac{(\Delta + n)^2 - 1}{12\pi^2 \Lambda^5} u \left(u^2 + \frac{1}{4} \right) \cosh^2(\pi u) ,$$

$$\mu_{24}^{(0)+} = w^{-5} \frac{(\Delta + n)^2 - 1}{16\pi^2 \Lambda^5} \left(u^2 + \frac{1}{4} \right)^2 \cosh^2(\pi u) ,$$

$$\mu_{34}^{(0)+} = -w^{-5} \frac{i((\Delta - n)^2 - 1)((\Delta + n)^2 - 1)^2}{4608\pi^2 \Lambda^5} .$$

$$\cdot \left(u^2 - \frac{3}{4} \right) \left(u^2 + \frac{1}{4} \right)^2 \cosh^2(\pi u) .$$

Для NLO \boldsymbol{P} -функций также изменяются только коэффициенты $A_a^{(1)}$:

$$A_3^{(1)} = \frac{(3\Delta^2 + 3n^2 + 4\Delta n - 15)}{24 i} , \qquad (3.54)$$
$$A_4^{(1)} = \frac{(3\Delta^2 + 3n^2 + 8\Delta n + 21)}{48 i} .$$

При решени
и ${\pmb P}\mu$ -системы аналогично находится коэффициен
т $c_{4,2}^{(5)}$

$$c_{4,2}^{(5)} = i \frac{(3(\Delta^2 - 1)^2 + 3n^4 - 2n^2(\Delta^2 + 3))\Lambda^4}{48(\Delta^2 + n^2 - 1)} .$$
(3.55)

И тогда NLO *P*-функции из решения принимают вид:

$$\begin{aligned} \boldsymbol{P}_{1}^{(1)} &= 0 , \qquad (3.56) \\ \boldsymbol{P}_{2}^{(1)} &= 0 , \\ \boldsymbol{P}_{3}^{(1)} &= -i \frac{(3\Delta^{2} + 3n^{2} + 4\Delta n - 15)}{24} u^{1/2} , \\ \boldsymbol{P}_{4}^{(1)} &= -i \frac{(3\Delta^{2} + 3n^{2} + 8\Delta n + 21)}{48} u^{3/2} + \\ &+ i \frac{(3(\Delta^{2} - 1)^{2} + 3n^{4} - 2n^{2}(\Delta^{2} + 3))}{48(\Delta^{2} + n^{2} - 1)} u^{-1/2} . \end{aligned}$$

Можно взять несколько QQ-соотношений из множества возможных:

$$\mathcal{Q}_{a|j}^+ - \mathcal{Q}_{a|j}^- = \boldsymbol{P}_a \boldsymbol{Q}_j , \qquad \boldsymbol{Q}_j = -\boldsymbol{P}^a \mathcal{Q}_{a|j}^{\pm} .$$
 (3.57)

Смещая аргумент u на $\pm i$, $\pm 2i$, получаем линейную систему четырех уравнений:

$$P^{a[-3]}\mathcal{Q}_{a|j} = Q_{j}^{[-3]} - Q_{j}^{[-1]}(P^{a[-3]}P_{a}^{[-1]}) , \qquad (3.58)$$

$$P^{a[-1]}\mathcal{Q}_{a|j} = Q_{j}^{[-1]} ,$$

$$P^{a[+1]}\mathcal{Q}_{a|j} = Q_{j}^{[+1]} ,$$

$$P^{a[+3]}\mathcal{Q}_{a|j} = Q_{j}^{[+3]} - Q_{j}^{[+1]}(P^{a[+3]}P_{a}^{[+1]}) .$$

Из неё можно выразить $Q_{a|j}$ в терминах P_a , P^a и Q_j . Следствием этого является связь P- и Q-функций через уравнение Бакстера 4-го порядка, т.е. с четырьмя сдвигами переменной:

$$\boldsymbol{Q}^{[+4]} - \boldsymbol{Q}^{[+2]} \left[D_1 - \boldsymbol{P}_a^{[+2]} \boldsymbol{P}^{a[+4]} D_0 \right] +$$

$$+ \boldsymbol{Q} \left[D_2 - \boldsymbol{P}_a \boldsymbol{P}^{a[+2]} D_1 + \boldsymbol{P}_a \boldsymbol{P}^{a[+4]} D_0 \right] -$$

$$- \boldsymbol{Q}^{[-2]} \left[\bar{D}_1 + \boldsymbol{P}_a^{[-2]} \boldsymbol{P}^{a[-4]} \bar{D}_0 \right] + \boldsymbol{Q}^{[-4]} = 0 ,$$
(3.59)

где D_0 , D_1 , D_2 , \overline{D}_0 , \overline{D}_1 – детерминанты собранные из P_a и P^a функций. Используя LO P-функции и подставляя их в эти детерминанты, можно вычислить уравнение Бакстера 4-го порядка. Для $S_2 = 0$ результат представлен формулой (3.60). При $S_2 = n$ уравнение Бакстера имеет структуру показанную формулой (3.61). Учитывая NLO P-фукнции, получается саблидирующее уравнение Бакстера 4-го порядка, его вид для $S_2 = n$ представлен в **В**.

$$\begin{aligned} \mathbf{Q}(u) \cdot \frac{1}{16u^{3/2}} \left((\Delta^2 - 49)(\Delta^2 - 1) + 96(\Delta^2 - 49)u^6 - (3.60) \right. \\ \left. - 16(\Delta^4 + 54\Delta^2 + 293)u^4 + (\Delta^2 - 1)(\Delta^4 - 90\Delta + 2137)u^2 \right) + \\ \left. + \mathbf{Q}(u - 2i) \cdot (u - 2i)^{5/2} \left(-8 + (\Delta^2 - 49)u(u + i) \right) + \\ \left. + \mathbf{Q}(u + 2i) \cdot (u + 2i)^{5/2} \left(-8 + (\Delta^2 - 49)u(u - i) \right) + \\ \left. + \mathbf{Q}(u - i) \cdot \frac{1}{4(u - i)^{5/2}} \left(u(522\Delta^2 + \Delta^4(u + i)(2u - 3i)(-3 + u(u - 3i)) + \\ \left. + 2\Delta^2 u(u(182 + u(2u(3 + 2(-2u - 9i)u) + 155i)) + 134i) + \\ \left. + u(u(-5478 + u(2u(-2631 + 196u(2u - 9i)) + 977i)) + \\ \left. + 6010i \right) + 2431 \right) - 64i(\Delta^2 + 7) \right) + \\ \left. + \mathbf{Q}(u + i) \cdot \frac{1}{4(u + i)^{5/2}} \left(u(522\Delta^2 + \Delta^4(u - i)(2u + 3i)(-3 + u(u + 3i)) - \\ \left. - 2\Delta^2 u(u(-182 + u(2u(-3 + 2(2u + 9i)u) + 155i)) + 134i) + \\ \left. + u(u(-5478 + u(2u(-2631 + 196u(2u + 9i)) - 977i)) - \\ \left. - 6010i \right) + 2431 \right) + 64i(\Delta^2 + 7) \right) = \\ &= 0 . \end{aligned}$$

$$\begin{aligned} & \boldsymbol{Q}(u-i) \cdot (u-i)^{5/2} \frac{1}{4(\Delta^2-25)} (\Delta^2-1)^2 ((n+\Delta)^2-1)^2. \quad (3.61) \\ & \cdot ((n-\Delta)^2-25) \left(\frac{1}{(u-i)^5} (2u^3-9iu^2-15u+9i) \cdot \\ & \cdot ((n+\Delta)^2-1) \left(((n-\Delta)^2-49) u^2+i ((n-\Delta)^2-49) u-8\right) - \\ & -8 \left((2u^2+iu+1) n^2-2 (2u^2+iu+1) \Delta n+\Delta^2 + \\ & +2u^2 (\Delta^2-49) + iu (\Delta^2-49) - 65\right)\right) + \\ & + \boldsymbol{Q}(u+i) \cdot (u+i)^{5/2} \frac{1}{4(\Delta^2-25)} (\Delta^2-1)^2 ((n+\Delta)^2-1)^2. \\ & \cdot ((n-\Delta)^2-25) \left(\frac{1}{(u+i)^5} (2u^3+9iu^2-15u-9i) \cdot \\ & \cdot ((n+\Delta)^2-1) \left(((n-\Delta)^2-49) u^2-i ((n-\Delta)^2-49) u-8\right) - \\ & -8 \left((2u^2-iu+1) n^2-2 (2u^2-iu+1) \Delta n+\Delta^2 + \\ & +2u^2 (\Delta^2-49) - iu (\Delta^2-49) - 65\right)\right) + \\ & + \boldsymbol{Q}(u+2i) \cdot (u+2i)^{5/2} \frac{1}{(\Delta^2-25)} (\Delta^2-1)^2 (n+\Delta-1)^2 (n+\Delta+1)^2. \\ & \cdot (n^2-2\Delta n+\Delta^2-25) \left((n^2-2\Delta n+\Delta^2-49) u^2 - \\ & -i (n^2-2\Delta n+\Delta^2-25) ((n^2-2\Delta n+\Delta^2-49) u^2 - \\ & -i (n^2-2\Delta n+\Delta^2-49) u-8\right) + \\ & + \boldsymbol{Q}(u-2i) \cdot (u-2i)^{5/2} \frac{1}{(\Delta^2-25) (\Delta^2-1)^2} (n+\Delta-1)^2 (n+\Delta+1)^2. \\ & \cdot (n^2-2\Delta n+\Delta^2-49) u-8\right) + \\ & + \boldsymbol{Q}(u) \cdot \frac{1}{16u^{3/2} (\Delta^2-25) (\Delta^2-1)^2} ((n+\Delta)^2-1)^2 ((n-\Delta)^2-25) \cdot \\ & \cdot ((u^2+1) (n^6-2\Delta n^5) - (16u^4+(\Delta^2+91) u^2+\Delta^2+91) n^4 + \\ & + 4 (u^2+1) (\Delta^3+\Delta) n^3 + (96u^6+32 (\Delta^2+27) u^4 + \\ & + (-\Delta^4+174\Delta^2+2227) u^2 - \Delta^4+174\Delta^2+2099) n^2 - \\ & -2\Delta^2-1919) n+96 (\Delta^2-49) u^6 + \Delta^6 - 91\Delta^4 + \\ & + (\Delta^6-91\Delta^4+227\Delta^2-2137) u^2+2092\Delta^2-16u^4. \\ & \cdot (\Delta^4-54\Delta^2+293) - 2009) = \\ & = 0 . \end{aligned}$$

Теперь сводим уравнение Бакстера 4-го порядка к уравнению 2-го. Зная \boldsymbol{P}_a и \boldsymbol{Q}_i можно построить $\mathcal{Q}_{a|j}$, используя (3.57), это позволяет определить ω_{ij}

$$\omega_{ij} = \mathcal{Q}_{a|i}^{-} \mathcal{Q}_{b|j}^{-} \mu^{ab} . \qquad (3.62)$$

Аналитическое продолжение под разрезами для Q-функций можно задать $Q\omega$ -системой:

$$\tilde{\omega}_{ij} - \omega_{ij} = \boldsymbol{Q}_i \tilde{\boldsymbol{Q}}_j - \boldsymbol{Q}_j \tilde{\boldsymbol{Q}}_i , \qquad (3.63)$$
$$\tilde{\boldsymbol{Q}}_i = \omega_{ij} \boldsymbol{Q}^j .$$

Используя (3.62), можем задать, так называемый, Вронскиан (определитель Вронского) для Q_1 и Q_3 :

$$\mathcal{Q}_{a,b|1,3} = Q_1^+ Q_3^- - Q_1^- Q_3^+ . \tag{3.64}$$

При $S_2 = 0$ получается следующая структура $\mathcal{Q}_{a,b|1,3}$:

$$\left\{\frac{4iA}{\pi^{2}(\Delta^{2}-1)\Lambda^{5}w^{5}}, \frac{A(\Delta^{2}-1)(12u^{2}-1)}{96\pi^{2}\Lambda^{5}w^{5}}, \frac{A(\Delta^{2}-1)u(4u^{2}-1)}{96\pi^{2}\Lambda^{5}w^{5}}, \frac{A(\Delta^{2}-1)u(4u^{2}+1)}{48\pi^{2}\Lambda^{5}w^{5}}, \frac{A(\Delta^{2}-1)u(4u^{2}+1)}{48\pi^{2}\Lambda^{5}w^{5}}, \frac{A(\Delta^{2}-1)(4u^{2}+1)^{2}}{256\pi^{2}\Lambda^{5}w^{5}}, -\frac{iA(\Delta^{2}-1)^{3}(4u^{2}-3)(4u^{2}+1)^{2}}{294912\pi^{2}\Lambda^{5}w^{5}}\right\}.$$
(3.65)

Для $S_2 = n$ структура $\mathcal{Q}_{a,b|1,3}$ принимает немного другой вид:

$$\left\{ \frac{4iA}{\pi^2((n-\Delta)^2 - 1)\Lambda^5 w^5}, \frac{A((\Delta+n)^2 - 1)(12u^2 - 1)}{96\pi^2\Lambda^5 w^5}, (3.66) \right\}$$

$$\frac{A((\Delta+n)^2 - 1)u(4u^2 + 1)}{48\pi^2\Lambda^5 w^5}, \frac{A((\Delta+n)^2 - 1)u(4u^2 + 1)}{48\pi^2\Lambda^5 w^5}, \frac{A((\Delta+n)^2 - 1)(4u^2 + 1)^2}{256\pi^2\Lambda^5 w^5}, \frac{A(((\Delta+n)^2 - 1)(4u^2 + 1)^2)}{256\pi^2\Lambda^5 w^5}, \frac{A(((\Delta+n)^2 - 1)(4u^2 + 1)^2)}{294912\pi^2\Lambda^5 w^5} \right\} .$$

В результате (3.59) можно свести к уравнению Бакстера 2-го порядка ис-

пользуя (3.64). Вид LO уравнения при $S_2 = n$ для j = 1, 3 и j = 2, 4 показан ниже:

$$-\frac{(1+8u^2-(\Delta-n)^2)}{2u^{5/2}}\boldsymbol{Q}_{1,3}^{(0)}(u)+ \qquad (3.67)$$

$$+\frac{2(u-i)}{(u-i)^{3/2}}\boldsymbol{Q}_{1,3}^{(0)}(u-i)+\frac{2(u+i)}{(u+i)^{3/2}}\boldsymbol{Q}_{1,3}^{(0)}(u+i)=0,$$

$$-\frac{(1+8u^2-(\Delta+n)^2)}{2u^{5/2}}\boldsymbol{Q}^{(0)2,4}(u)+$$

$$+\frac{2(u-i)}{(u-i)^{3/2}}\boldsymbol{Q}^{(0)2,4}(u-i)+\frac{2(u+i)}{(u+i)^{3/2}}\boldsymbol{Q}^{(0)2,4}(u+i)=0.$$

Уравнение Бакстера 2-го порядка в NLO для $S_2 = n$ при j = 1, 3 и j = 2, 4 принимает вид:

$$\begin{aligned} \boldsymbol{Q}_{1,3}^{(1)}(u+i) + \boldsymbol{Q}_{1,3}^{(1)}(u-i) + \left(-2 + \frac{(\Delta - n)^2 - 1}{4u^{5/2}}\right) \boldsymbol{Q}_{1,3}^{(1)}(u) &= (3.68) \\ &= -\frac{i}{2(u+i)^{3/2}} \boldsymbol{Q}_{1,3}^{(0)}(u+i) + \frac{i}{2(u-i)^{3/2}} \boldsymbol{Q}_{1,3}^{(0)}(u-i) + \\ &+ \frac{u^{5/2} - \Lambda(\Delta - n)^2 - 1}{2u^{9/2}} \boldsymbol{Q}_{1,3}^{(0)}(u) , \\ \boldsymbol{Q}^{(1)2,4}(u+i) + \boldsymbol{Q}^{(1)2,4}(u-i) + \left(-2 + \frac{(\Delta + n)^2 - 1}{4u^{5/2}}\right) \boldsymbol{Q}^{(1)2,4}(u) = \\ &= -\frac{i}{2(u+i)^{3/2}} \boldsymbol{Q}^{(0)2,4}(u+i) + \frac{i}{2(u-i)^{3/2}} \boldsymbol{Q}^{(0)2,4}(u-i) + \\ &+ \frac{u^{5/2} - \Lambda(\Delta + n)^2 - 1}{2u^{9/2}} \boldsymbol{Q}^{(0)2,4}(u) . \end{aligned}$$

3.2 ОДДЕРОН С *Р*-ФУНКЦИЯМИ БЕЗ ОПРЕДЕЛЁННОЙ ЧЁТНОСТИ

Параметризация \boldsymbol{P} -функций без определённой чётности с $g \equiv \Lambda w$ имеет вид:

$$\boldsymbol{P}_{a} = x^{-\tilde{M}_{a}} \left((\Lambda w)^{-\tilde{M}_{a}} A_{a} + \sum_{k=1}^{+\infty} \frac{c_{a,k}}{x^{k}} \right) .$$
(3.69)

Подставляются значения для \tilde{M}_a (3.9) и A_a (3.21) в \boldsymbol{P}_a (3.69):

$$\boldsymbol{P}_{1} = \frac{1}{(\Lambda wx)^{5/2}} + \sum_{k=1}^{+\infty} \frac{c_{1,k}}{x^{k+5/2}}, \qquad (3.70)$$

$$\boldsymbol{P}_{2} = \frac{1}{(\Lambda wx)^{3/2}} + \sum_{k=1}^{+\infty} \frac{c_{2,k}}{x^{k+3/2}},$$

$$\boldsymbol{P}_{3} = A_{3}(\Lambda wx)^{1/2} + \sum_{k=1}^{+\infty} \frac{c_{3,k}}{x^{k-1/2}},$$

$$\boldsymbol{P}_{4} = A_{4}(\Lambda wx)^{3/2} + \sum_{k=1}^{+\infty} \frac{c_{4,k}}{x^{k-3/2}}.$$

Есть возможность эффективно сократить члены содержащий $c_{4,4}, c_{4,3}$ и $c_{4,1}$, если учесть $\mathbf{P}_4 \to \mathbf{P}_4 + \alpha_1 \mathbf{P}_1, \mathbf{P}_4 \to \mathbf{P}_4 + \alpha_2 \mathbf{P}_2$ и $\mathbf{P}_4 \to \mathbf{P}_4 + \alpha_3 \mathbf{P}_3$, положив $\alpha_1 = -c_{4,4} g^{5/2}, \alpha_2 = -c_{4,3} g^{3/2}$ и $\alpha_3 = -c_{4,1}/(g^{1/2}A_3)$. Раз так, то можно установить $c_{4,4} = c_{4,3} = c_{4,1} = 0$. Аналогично можно убрать слагаемые при $c_{3,3}$ и $c_{3,2}$, если применить $\mathbf{P}_3 \to \mathbf{P}_3 + \beta_1 \mathbf{P}_1$ и $\mathbf{P}_3 \to \mathbf{P}_3 + \beta_2 \mathbf{P}_2$, положив $\beta_1 = -c_{3,3} g^{5/2}$ и $\beta_2 = -c_{3,2} g^{3/2}$. Следовательно, можно положить $c_{3,3} = c_{3,2} = 0$. Если учесть $\mathbf{P}_2 \to \mathbf{P}_2 + \gamma_1 \mathbf{P}_1$, то можно сократить слагаемое содержащее $c_{2,1}$, при $\gamma_1 = -c_{2,1} g^{5/2}$. Поэтому $c_{2,1} = 0$.

Предполагая, что поведение *P*-функции определяется поведением лидирующего коэффициента, получаем:

$$c_{a,k} = \mathcal{O}\left(w^{-\tilde{M}_a - k}\right) . \tag{3.71}$$

С другой стороны, также предполагается, что скейлинг \tilde{P} -функции определяется первым членом из \tilde{P}_1 , т.е. $\tilde{P}_a = \mathcal{O}(w^{-5})$. Такое условие приводит к:

$$c_{a,k} = \mathcal{O}\left(w^{\tilde{M}_a + k - 5}\right) . \tag{3.72}$$

Т.к. почти для всех k и a степень w в (3.72) больше степени в (3.71), то параметризация для коэффициентов $c_{a,k}$ (ряд по степеням w):

$$c_{a,k} = (\Lambda w)^{k+\tilde{M}_a-5} \sum_{m=0}^{+\infty} c_{a,k}^{(m)} w^m .$$
(3.73)

Исключениями являются:

$$c_{4,1}^{(0-5)} , \qquad c_{4,2}^{(0-3)} , \qquad c_{4,3}^{(0-1)} , \qquad c_{3,1}^{(0-3)} , \qquad c_{3,2}^{(0-1)} .$$

Условие (3.71) приводит к тому, что все они равны нулю.

Лидирующий порядок \boldsymbol{P} -функций (LO, при w^0) имеет вид:

$$\begin{aligned} \boldsymbol{P}_{1}^{(0)} &= \frac{1}{u^{5/2}} , \end{aligned} \tag{3.74} \\ \boldsymbol{P}_{2}^{(0)} &= \frac{1}{u^{3/2}} + \frac{c_{2,1}^{(0)}}{u^{5/2}} , \\ \boldsymbol{P}_{3}^{(0)} &= A_{3}^{(0)} u^{1/2} + \frac{7c_{3,1}^{(0)}}{8u^{9/2}} + \frac{c_{3,1}^{(2)}}{2\Lambda^{2}u^{5/2}} + \frac{c_{3,1}^{(4)}}{\Lambda^{4}u^{1/2}} + \frac{3c_{3,2}^{(0)}}{2u^{7/2}} + \frac{c_{3,2}^{(2)}}{\Lambda^{2}u^{3/2}} + \frac{c_{3,3}^{(0)}}{u^{5/2}} , \\ \boldsymbol{P}_{4}^{(0)} &= A_{4}^{(0)} u^{3/2} - \frac{21c_{4,1}^{(0)}}{16u^{11/2}} - \frac{5c_{4,1}^{(2)}}{8\Lambda^{2}u^{7/2}} - \frac{c_{4,1}^{(4)}}{2\Lambda^{2}u^{3/2}} + \frac{u^{1/2}c_{4,1}^{(6)}}{\Lambda^{6}} + \\ &+ \frac{7c_{4,2}^{(0)}}{8u^{9/2}} + \frac{c_{4,2}^{(2)}}{2\Lambda^{2}u^{5/2}} + \frac{c_{4,2}^{(4)}}{\Lambda^{4}u^{1/2}} + \frac{3c_{4,3}^{(0)}}{2u^{7/2}} + \frac{c_{4,3}^{(2)}}{\Lambda^{2}u^{3/2}} + \frac{c_{4,4}^{(0)}}{u^{5/2}} , \end{aligned}$$

С учётом всех введённые ранее ограничений получается:

$$\begin{aligned} \boldsymbol{P}_{1}^{(0)} &= \frac{1}{u^{5/2}} , \qquad (3.75) \\ \boldsymbol{P}_{2}^{(0)} &= \frac{1}{u^{3/2}} , \\ \boldsymbol{P}_{3}^{(0)} &= A_{3}^{(0)} u^{1/2} + \frac{c_{3,1}^{(4)}}{\Lambda^{4} u^{1/2}} , \\ \boldsymbol{P}_{4}^{(0)} &= A_{4}^{(0)} u^{3/2} + \frac{c_{4,2}^{(4)}}{\Lambda^{4} u^{1/2}} . \end{aligned}$$

Следующий порядок разложения $\boldsymbol{P}\text{-} \boldsymbol{\varphi}$ ункций (NLO, пр
и $w^1)$ имеет вид:

$$\begin{aligned} \boldsymbol{P}_{1}^{(1)} &= 0 , \qquad (3.76) \\ \boldsymbol{P}_{2}^{(1)} &= \frac{c_{2,1}^{(1)}}{u^{5/2}} , \\ \boldsymbol{P}_{3}^{(1)} &= A_{3}^{(1)} u^{1/2} + \frac{7c_{3,1}^{(1)}}{8u^{9/2}} + \frac{c_{3,1}^{(3)}}{2\Lambda^{2}u^{5/2}} + \frac{c_{3,1}^{(5)}}{\Lambda^{4}u^{1/2}} + \frac{3c_{3,2}^{(1)}}{2u^{7/2}} + \frac{c_{3,3}^{(3)}}{\Lambda^{2}u^{3/2}} + \frac{c_{3,3}^{(1)}}{u^{5/2}} , \\ \boldsymbol{P}_{4}^{(1)} &= A_{4}^{(1)} u^{3/2} - \frac{21c_{4,1}^{(1)}}{16u^{11/2}} - \frac{5c_{4,1}^{(3)}}{8\Lambda^{2}u^{7/2}} - \frac{c_{4,1}^{(5)}}{2\Lambda^{2}u^{3/2}} + \frac{u^{1/2}c_{4,1}^{(7)}}{\Lambda^{6}} + \\ &+ \frac{7c_{4,2}^{(1)}}{8u^{9/2}} + \frac{c_{4,2}^{(3)}}{2\Lambda^{2}u^{5/2}} + \frac{c_{4,2}^{(5)}}{\Lambda^{4}u^{1/2}} + \frac{3c_{4,3}^{(1)}}{2u^{7/2}} + \frac{c_{4,3}^{(3)}}{\Lambda^{2}u^{3/2}} + \frac{c_{4,4}^{(1)}}{u^{5/2}} . \end{aligned}$$

С учётом ограничений, наложенных на $c_{a,k}^{(m)}$, получаются следующие $\boldsymbol{P}^{(1)}$ - функции:

$$\begin{aligned} \boldsymbol{P}_{1}^{(1)} &= 0 , \qquad (3.77) \\ \boldsymbol{P}_{2}^{(1)} &= 0 , \\ \boldsymbol{P}_{3}^{(1)} &= A_{3}^{(1)} u^{1/2} + \frac{c_{3,1}^{(5)}}{\Lambda^{4} u^{1/2}} , \\ \boldsymbol{P}_{4}^{(1)} &= A_{4}^{(1)} u^{3/2} + \frac{c_{4,2}^{(5)}}{\Lambda^{4} u^{1/2}} . \end{aligned}$$

ЗАКЛЮЧЕНИЕ

Рассмотрение КХД задачи рассеяния адронов при высоких энергиях сводится к рассмотрению в $\mathcal{N} = 4$ SYM, за счёт принципа максимальной трансцендентальности. Этот принцип позволяет получать определённую часть ответа из КХД, которую в ином случае, в самой КХД, вычислить не представляется возможным из-за сложности диаграмм. Померонное состояние, отвечающее за адрон-адронное взаимодействие, изучено достаточно хорошо, поэтому внимание уделено состоянию, отвечающему за адронантиадронное рассеяние, – Оддерону.

При решении уравнений Квантовой Спектральной Кривой были получены и проанализированы LO и NLO $P\mu$ -системы при $S_2 = 0$: (3.42), (3.47). Эта же работа была выполнена для новых $P\mu$ -систем – общего случая $S_2 = n$: (3.52), (3.56).

Посредством связи **P**- и **Q**-функций были получены дифференциальные уравнения четвертого порядка для **Q**-функций с коэффициентами, построенными из **P**_a: (3.61), (B.1). Получены новые уравнения Бакстера в лидирующем и саблидирующем порядках для Оддерона за счёт рассмотрения общего случая $S_2 = n$: (3.67), (3.68).

Дополнительно к этому выполнены начальные шаги по рассмотрению случая *P*-функций без определённой чётности, найден общий вид этих функций в LO и NLO порядках: (3.75), (3.77).

A. μ B NLO

Начальный анзац для NLO *µ*-функции задаётся следующим образом:

$$\begin{split} \mu_{12}^{(1)+} &= \mu_{12}^{(0)+} \left(\frac{C_{1,1}}{\cosh^2(\pi u)} + C_{1,2} \Psi(u) \right) \cdot w + \\ &+ b_{1,1} \cosh^2(\pi u) \cdot w^{-4} + \mu_{12}^{(0)+} , \\ \mu_{13}^{(1)+} &= \mu_{13}^{(0)+} \left(\frac{C_{2,1}}{\cosh^2(\pi u)} + C_{2,2} \Psi(u) \right) \cdot w + \\ &+ (b_{2,1} u^2 + b_{2,2}) \cosh^2(\pi u) \cdot w^{-4} + \mu_{13}^{(0)+} , \\ \mu_{14}^{(1)+} &= \mu_{14}^{(0)+} \left(\frac{C_{3,1}}{\cosh^2(\pi u)} + C_{3,2} \Psi(u) \right) \cdot w + \\ &+ (b_{3,1} u^3 + b_{3,2} u) \cosh^2(\pi u) \cdot w^{-4} + \mu_{14}^{(0)+} , \\ \mu_{24}^{(1)+} &= \mu_{24}^{(0)+} \left(\frac{C_{4,1}}{\cosh^2(\pi u)} + C_{4,2} \Psi(u) \right) \cdot w + \\ &+ (b_{4,1} u^4 + b_{4,2} u^2 + b_{4,3}) \cosh^2(\pi u) \cdot w^{-4} + \mu_{24}^{(0)+} , \\ \mu_{34}^{(1)+} &= \mu_{34}^{(0)+} \left(\frac{C_{5,1}}{\cosh^2(\pi u)} + C_{5,2} \Psi(u) \right) \cdot w + \\ &+ (b_{5,1} u^6 + b_{5,2} u^4 + b_{5,3} u^2 + b_{5,4}) \cosh^2(\pi u) \cdot w^{-4} + \mu_{34}^{(0)+} , \end{split}$$

где Ф-функция имеет вид

$$\Psi(u) = \psi^{(0)} \left(\frac{1}{2} - iu\right) + \psi^{(0)} \left(\frac{1}{2} + iu\right) - 2\psi^{(0)}(1) , \qquad (A.2)$$

а $\psi^{(0)}(u)$ – дигамма-функция. Для $S_2 = 0$ все коэффициенты b выражаются через $b_{3,1}$:

$$b_{3,1} = -\frac{1}{6\pi^2 \Lambda^5} , \qquad (A.3)$$

все $C_{k,1} = 0$, а все $C_{k,2} = -1/2$, при k = 1, ..., 5.

В NLO $\boldsymbol{P}\mu$ -системе μ -функции принимают вид:

$$\begin{split} \mu_{12}^{(1)+} &= -\frac{\mu_{12}^{(0)+}\Psi(u)w}{2} - \qquad (A.4) \\ &\quad -\frac{8i}{\pi^2(\Delta^2-1)^2\Lambda^5}\cosh^2(\pi u)\cdot w^{-4} + \mu_{12}^{(0)+} , \\ \mu_{13}^{(1)+} &= -\frac{\mu_{13}^{(0)+}\Psi(u)w}{2} + \\ &\quad + \left(\frac{1}{4\pi^2\Lambda^5}u^2 + \frac{7}{48\pi^2\Lambda^5}\right)\cosh^2(\pi u)\cdot w^{-4} + \mu_{13}^{(0)+} , \\ \mu_{14}^{(1)+} &= -\frac{\mu_{14}^{(0)+}\Psi(u)w}{2} - \\ &\quad - \left(\frac{1}{6\pi^2\Lambda^5}u^3 + \frac{1}{24\pi^2\Lambda^5}u\right)\cosh^2(\pi u)\cdot w^{-4} + \mu_{14}^{(0)+} , \\ \mu_{24}^{(1)+} &= -\frac{\mu_{24}^{(0)+}\Psi(u)w}{2} - \left(\frac{3}{8\pi^2\Lambda^5}u^4 + \\ &\quad + \frac{2}{16\pi^2\Lambda^5}u^2 + \frac{3}{128\pi^2\Lambda^5}\right)\cosh^2(\pi u)\cdot w^{-4} + \mu_{24}^{(0)+} , \\ \mu_{34}^{(1)+} &= -\frac{\mu_{34}^{(0)+}\Psi(u)w}{2} + \left(\frac{i(\Delta^2-1)^2}{2304\pi^2\Lambda^5}u^6 - \frac{25i(\Delta^2-1)^2}{9216\pi^2\Lambda^5}u^4 - \\ &\quad - \frac{53i(\Delta^2-1)^2}{36864\pi^2\Lambda^5}u^2 - \frac{3i(\Delta^2-1)^2}{16384\pi^2\Lambda^5}\right)\cosh^2(\pi u)\cdot w^{-4} + \mu_{34}^{(0)+} . \end{split}$$

При $S_2 = n \mu$ -функции имеют похожую структуру, но более громоздкий вид.

В. САБЛИДИРУЮЩЕЕ УРАВНЕНИЕ БАКСТЕРА 4-ГО ПОРЯДКА

При использовании детерминантов заполненных NLO P-функциями для $S_2 = n$ уравнение Бакстера 4-го порядка принимает следующий вид:

$$\begin{split} \mathbf{Q}(u) & \cdot \frac{1}{12u^{3/2}(\Delta^2 - 12)(\Delta^2 - 1)^2(n^2 + \Delta^2 - 1)} ((n + \Delta)^2 - 1)^2(3(7u^2 + 9)n^8 + (B.1) \\ & + 4(2u^4 - 7u^2 - 13)\Delta n^7 - 4((8\Delta^2 + 54)u^4 + 3(4\Delta^2 + 133)u^2 + 2\Delta^2 + 501)n^6 + \\ & + 4(2(7\Delta^2 - 111)u^4 + (27\Delta^2 - 323)u^2 + 17\Delta^2 - 57)\Delta n^5 + 2(864u^6 - \\ & - 4(8\Delta^4 - 251\Delta^2 - 837)u^4 + (-53\Lambda^4 + 1882\Delta^2 + 14043)u^2 - 35\Delta^4 + 1254\Delta^2 + 18285)n^4 + \\ & + 4(-864u^6 + 2(7\Delta^4 - 226\Delta^2 + 4731)u^4 + (27\Delta^4 - 438\Delta^2 + 23227)u^2 + 17\Delta^4 - 138\Delta^2 + \\ & + 19641)\Delta n^3 + 4(864(\Delta^2 - 18)u^6 + (-8\Delta^6 + 502\Delta^4 + 2788\Delta^2 + 4590)u^4 + \\ & + (-12\Delta^6 + 941\Delta^4 + 13858\Delta^2 + 14781)u^2 - 2\Delta^6 + 627\Delta^4 + 16568\Delta^2 - 4137)n^2 + \\ & + 4(-864(\Delta^2 - 1)u^6 + 2(\Delta^6 - 111\Delta^4 + 4731\Delta^2 - 4045)u^4 - (7\Delta^6 + 323\Delta^4 - 23227\Delta^2 + \\ & + 22897)u^2 - 13\Delta^6 - 57\Delta^4 + 19641\Delta^2 - 19571)\Delta n + 3(\Delta^2 - 1)(576(\Delta^2 - 35)u^6 - \\ & - 72(\Delta^4 - 30\Delta^2 - 115)u^4 + (7\Delta^6 - 525\Delta^4 + 8837\Delta^2 + 28545)u^2 + 9\Delta^6 - 659\Delta^4 + \\ & + 11531\Delta^2 + 6015)) \end{split}$$

$$+ Q(u - i) \cdot \frac{1}{24(u - i)^{5/2}(\Delta^2 - 25)(\Delta^2 - 1)^2(n^2 + \Delta^2 - 1)} ((n + \Delta)^2 - 1)^2(3(2u^2 - iu + 3) \cdot un^8 + 4(-2u^3 + 7iu^2 + 9i)u^2\Delta n^7 + 4((4\Delta^2 + 27)u^4 - 2i(4\Delta^2 + 27)u^3 + (5\Delta^2 - 57)u^2 - \\ & - i(7\Delta^2 + 162)u - 24)(2u - 3i)n^6 - 4u(2u - 3i)\Delta((7\Delta^2 - 111)u^3 - 2i(7\Delta^2 - 111)u^2 + \\ & + 5(\Delta^2 - 29)u - 4i(4\Delta^2 - 51))n^5 - 2(1152u^7 - 5184iu^6 - 4(8\Delta^4 - 251\Delta^2 + 1311)u^5 + \\ & + 2(56\Delta^4 - 1757\Delta^2 - 3639)iu^4 + (78\Delta^4 - 2344\Delta^2 - 20646)u^3 + (105\Delta^4 - 3698\Delta^2 + 705)iu^2 + \\ & + (117\Delta^4 - 4268\Delta^2 - 2343)u + 48(7\Delta^2 + 89)i)n^4 - 4\Delta(-1152u^7 + 5184iu^6 + \\ & + 2(7\Delta^4 - 1266\Delta^2 + 9019)u^5 - i(49\Delta^4 - 1582\Delta^2 + 37405)u^4 - 16(2\Delta^4 - 65\Delta^2 + 1159)u^3 - \\ & - i(47\Delta^4 - 1706\Delta^2 + 48859)u^2 - 8(6\Delta^4 - 247\Delta^2 + 7345)u - 32i(6\Delta^2 - 233))n^3 - \\ & - i(47\Delta^4 - 1706\Delta^2 + 48859)u^2 - 8(6\Delta^4 - 247\Delta^2 + 7345)u - 32i(6\Delta^2 - 233))n^3 - \\ & - i(47\Delta^4 - 1706\Delta^2 + 2857)iu^2 + 2(2\Delta^6 - 1134\Delta^4 - 12367\Delta^2 - 15822)u^4 + \\ & (28\Delta^6 - 1757\Delta^4 - 5522\Delta^2 - 93705)iu^4 + 2(7\Delta^6 - 586\Delta^4 - 9013\Delta^2 + 57528)u^3 + \\ & (28\Delta^6 - 1757\Delta^4 - 5622\Delta^2 - 93705)iu^4 + 2(7\Delta^6 - 586\Delta^4 - 9013\Delta^2 + 1582u^2)u + \\ & + 8(21\Delta^4 + 182\Delta^2 + 25757$$

$$\begin{split} + Q(u+i) \cdot \frac{1}{24(u+i)^{5/2}(\Delta^2-25)(\Delta^2-1)^2(n^2+\Delta^2-1)} ((n+\Delta)^2-1)^2 (3(2u^2+iu+3) \cdot \\ \cdot un^8 - 4u^2(2u^3+7iu^2+9i)\Delta n^7 + 4((4\Delta^2+27)u^4+2(4\Delta^2+27)iu^3 + (5\Delta^2-57)u^2 + \\ + (7\Delta^2+162)iu-24)(2u+3i)n^6 - 4u(2u+3i)\Delta((7\Delta^2-111)u^3+2(7\Delta^2-111)iu^2 + \\ + 5(\Delta^2-29)u+4(4\Delta^2-51)i)n^8 - 2(1152u^7+5184iu^6-4(8\Delta^4-251\Delta^2+1311)u^5 - \\ - 2i(56\Delta^4-1757\Delta^2-3639)u^4 + (78\Delta^4-2344\Delta^2-20646)u^3 - i(105\Delta^4-3698\Delta^2+705)u^2 + \\ + (117\Delta^4-4268\Delta^2-23433)u - 48i(7\Delta^2+89))n^4 - 4\Delta(-1152u^7-5184iu^6 + \\ + 2(7\Delta^4-226\Delta^2+9019)u^5 + (49\Delta^4-1582\Delta^2+37405)iu^4 - 16(2\Delta^4-65\Delta^2+1159)u^3 + \\ + (47\Delta^4-1706\Delta^2+48859)iu^2 - 8(6\Delta^4-247\Delta^2+7345)u+32(6\Delta^2-233)i)n^3 - \\ - 4(1152(\Delta^2-18)u^7+5184(\Delta^2-18)iu^6 + (-8\Delta^6+502\Delta^4-5772\Delta^2+159006)u^5 - \\ - i(28\Delta^6-1757\Delta^4-5622\Delta^2-93705)u^4+2(7\Delta^6-586\Delta^4-9013\Delta^2+57528)u^3 - \\ - i(29\Delta^6-1849\Delta^4+4843\Delta^2-255375)u^2 + (21\Delta^6-2134\Delta^4-12367\Delta^2-154224)u - \\ - 8i(21\Delta^4+182\Delta^2+2757))n^2 - 4\Delta(-1152(\Delta^2-1)u^7-5184i(\Delta^2-1)u^6 + \\ + 2(\Delta^6-1814\Delta^2+351)u^3 + (9\Delta^6-843\Delta^4+48859\Delta^2-63385)iu^2 + \\ + (612\Delta^4-58760\Delta^2+65828)u+32i(281-233\Delta^2))n + 3(\Delta^2-1)(-768(\Delta^2-35)u^7 - \\ - 3456i(\Delta^2-35)u^6+8(9\Delta^4+446\Delta^2-26055)u^5+4(63\Delta^4-1150\Delta^2-32855)iu^4 + \\ + (3\Delta^6-709\Delta^4+14913\Delta^2+220545)u - 32i(3\Delta^4-86\Delta^2-1005)))) + \\ + Q(u+2i)\cdot(u+2i)^{5/2}\frac{1}{3(\Delta^2-25)(\Delta^2-1)^2(n^2+\Delta^2-1)}4((n+\Delta)^2-1)^2(3(6u^2-6iu+1)n^4 - \\ - 4(9u^2-9iu+2)\Delta n^3+2(18(\Delta^2-18)u^2-18i(\Delta^2-18)u+5\Delta^2-69)n^2 - \\ - 4\Delta(9(\Delta^2-1))u^2 - 9i(\Delta^2-1)u+2(\Delta^2-7))n + 3(6(\Delta^2-35)u^2-6i(\Delta^2-35)u + \\ + \Delta^2-45)(\Delta^2-1)) + \\ + Q(u-2i)\cdot(u-2i)^{5/2}\frac{1}{3(\Delta^2-25)(\Delta^2-1)^2(n^2+\Delta^2-1)}4((n+\Delta)^2-1)^2(3(6u^2+6iu+1)n^4 - \\ - 4(9u^2-9iu+2)\Delta n^3+2(18(\Delta^2-18)u^2+18(\Delta^2-18)u+5\Delta^2-69)n^2 - \\ - 4\Delta(9(\Delta^2-1))u^2 - 9i(\Delta^2-1)u+2(\Delta^2-7))n + 3(6(\Delta^2-35)u^2+6(\Delta^2-35)u + \\ + \Delta^2-45)(\Delta^2-1)) = \\ = 0 . \end{split}$$

СПИСОК ЛИТЕРАТУРЫ

- 1. A measurement and QCD analysis of the proton structure function $F_2(x, Q^2)$ at HERA / S. Aid [et al.] // Nucl. Phys. B. 1996. Vol. 470. P. 3–38.
- 2. Measurement of the proton structure function F_2 at low x and low Q^2 at HERA / M. Derrick [et al.] // Zeit. Phys. C. 1996. Vol. 69. P. 607–620.
- The QCD pomeron with optimal renormalization / S. Brodsky [et al.] // JETP Lett. — 1999. — Vol. 70. — P. 155–160.
- 4. Lukaszuk L., Nicolescu B. A Possible interpretation of pp rising total cross-sections // Lett. Nuovo Cim. 1973. Vol. 8. P. 405–413.
- 5. Fischer J. Odderon classes general criteria // Nucl. Phys. B. 1990. Vol. 12. P. 331–338.
- Kwiecinski J., Praszalowicz M. Three Gluon Integral Equation and Odd C Singlet Regge Singularities in QCD // Phys. Lett. B. — 1980. — Vol. 94. — P. 413–416.
- 7. Elastic differential cross-section $d\sigma/dt$ at $\sqrt{s} = 2.76$ TeV and implications on the existence of a colourless C-odd three-gluon compound state / G. Antchev [et al.] // Eur. Phys. J. C. — 2020. — Vol. 80, no. 91.
- Odderon Exchange from Elastic Scattering Differences between pp and pp̄ Data at 1.96 TeV and from pp Forward Scattering Measurements / V. Abazov [et al.] // Phys. Rev. Lett. — 2021. — Vol. 127, no. 062003.
- Martynov E., Nicolescu B. Did TOTEM experiment discover the Odderon? // Phys. Lett. B. — 2018. — Vol. 778. — P. 414–418.
- Martynov E., Nicolescu B. Odderon effects in the differential crosssections at Tevatron and LHC energies // Eur. Phys. J. C. — 2019. — Vol. 79, no. 461.

- Review of Particle Physics / C. Patrignani [et al.] // Chin. Phys. C. –
 2016. Vol. 40, no. 100001.
- Kuraev E., Lipatov L., Fadin V. Multiregge processes in the Yang-Mills theory // Sov. Phys. JETP. — 1976. — Vol. 44. — P. 443–450.
- Kuraev E., Lipatov L., Fadin V. The Pomeranchuk singularity in nonabelian gauge theories // Sov. Phys. JETP. — 1977. — Vol. 45. — P. 199–204.
- Balitsky I., Lipatov L. The Pomeranchuk Singularity in Quantum Chromodynamics // Sov. J. Nucl. Phys. — 1978. — Vol. 28. — P. 822–829.
- 15. Gromov N., Levkovich-Maslyuk F., Sizov G. Pomeron Eigenvalue at Three Loops in $\mathcal{N} = 4$ Supersymmetric Yang-Mills Theory // Phys. Rev. Lett. 2015. Vol. 115, no. 251601.
- Kotikov A., Lipatov L. DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory // Nucl. Phys. B. — 2003. — Vol. 661. — P. 19–61.
- 17. Kotikov A. The property of maximal transcendentality in the $\mathcal{N} = 4$ SYM // Phys. Part. Nucl. 2010. Vol. 41. P. 951–953.