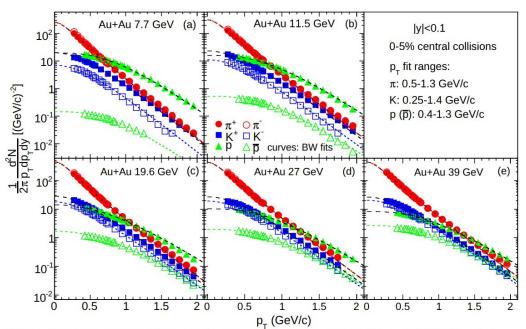
$\pi/K/p$ spectra, Au+Au for 7.7, 19.6, 27 GeV UrQMD

Statistics: ~2M

Track cuts:

- PDG $(\pi^{\pm} = \pm 211, K^{\pm} = \pm 321, p \text{ (p-bar)} = \pm 2212)$
- |y| < 0.1,
- $|\eta| < 0.5$
- \bullet p_T $> 0.2~{
 m GeV/c}$


Bin width for spectra: 50 MeV/c

Centrality was calculated using multiplicity.

Variation of Tkin with <β> for different centralities and energies

Simultaneous fit of the $\pi\pm$, $K\pm$, p, and $\bar{}$ p spectra across all the BES energies.

Experimental results from: Phys. Rev. C 96, 044904 (2017)

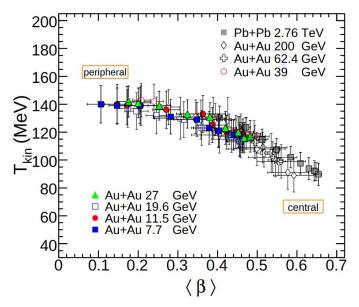


FIG. 37: (Color online) Variation of $T_{\rm kin}$ with $\langle \beta \rangle$ for different energies and centralities. The centrality increases from left to right for a given energy. The data points other than BES energies are taken from Refs. [43, 66]. Uncertainties represent systematic uncertainties.

FIG. 36: (Color online) Blast wave model fits of π^{\pm} , K^{\pm} , p and \bar{p} p_T spectra in 0–5% central Au+Au collisions at $\sqrt{s_{NN}}$ = (a) 7.7 GeV, (b) 11.5 GeV, (c) 19.6 GeV, (d) 27 GeV, and (e) 39 GeV. Uncertainties on experimental data represent statistical and systematic uncertainties added in quadrature. Here, the uncertainties are smaller than the symbol size.

Blast wave fit of each spectra for 7.7 GeV

 $Au+Au\sqrt{s_{NN}} = 7.7 \text{ GeV}$

 $Au+Au \sqrt{s_{NN}} = 7.7 \text{ GeV}$

0-5%

p_T GeV/c

p_T GeV/c

0-5%

0.5

0.5

UrQMD

UrQMD

1.5

1.5

 10^{-1}

 10^{-2}

10⁻¹

 10^{-2}

0.5

0.5

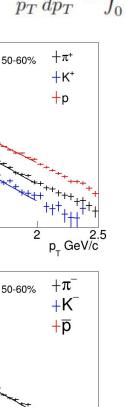
 $\frac{dN}{p_T dp_T} \propto \int_0^R r \, dr \, m_T I_0 \left(\right.$ $+\pi^+$ +K+ **+**p 2.5 p_T GeV/c $+\pi^{-}$ $+K^{-}$ $+\overline{p}$

 m_{τ} - transverse mass

I₀, K₁ - Bessel functions

n - exponent of flow

 ρ (r) = tanh⁻¹ (β)


 $\beta = 2 * \beta_S / (2+n)$ β_{S} - surface velocity

velocity profile

50-60% 50-60% 2.5 p_{_} GeV/c

1.5

1.5

Blast wave fit of each spectra for 19.6 GeV

0-5%

p_T GeV/c

0.5

1.5

 10^{-1}

 10^{-2}

 10^{-1}

 10^{-2}

0.5

 $\frac{dN}{p_T dp_T} \propto \int_0^R r dr \, m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{\rm kin}} \right)$ $+\pi^+$ Au+Au √s_{NN} = 19.6 GeV **UrQMD** 50-60% +K+ 0-5% **+**p p_T GeV/c 0.5 1.5 0.5 1.5 p_T GeV/c $+\pi^{-}$ UrQMD $Au+Au \sqrt{s_{NN}} = 19.6 \text{ GeV}$ 50-60%

 $\times K_1\left(\frac{m_T\cosh\rho(r)}{T_{\text{Lin}}}\right)$ m_{τ} - transverse mass ρ (r) = tanh⁻¹ (β)

 $+K^{-}$

 $+\overline{p}$

p_T GeV/c

1.5

I₀, K₁ - Bessel functions $\beta = 2 * \beta_S / (2+n)$ β_{S} - surface velocity n - exponent of flow velocity profile

Blast wave fit of each spectra for 27 GeV

Au+Au √s_{NN} = 27 GeV

UrQMD

10⁻²

0.5

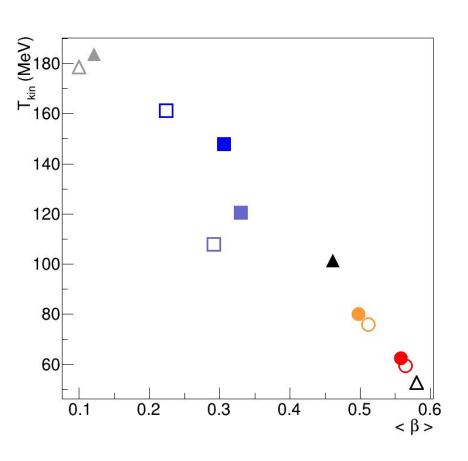
 $\frac{dN}{p_T dp_T} \propto \int_0^R r dr \, m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{\rm kin}} \right)$ $\times K_1\left(\frac{m_T\cosh\rho(r)}{T_{\text{him}}}\right)$ $+\pi^+$ +K+

50-60%

p_T GeV/c

1.5

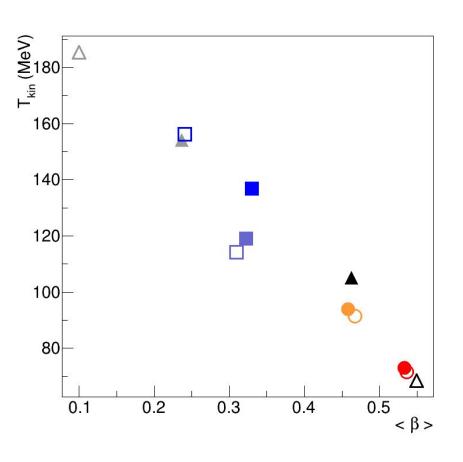
0-5% **+**p 10^{-1} 10^{-2} 2.5 p_T GeV/c 0.5 1.5 0.5 1.5 p_T GeV/c $+\pi^{-}$ UrQMD Au+Au √s_{NN} = 27 GeV 50-60% $+K^{-}$ 0-5% $+\overline{p}$ 10⁻¹ ■


p_T GeV/c

0.5

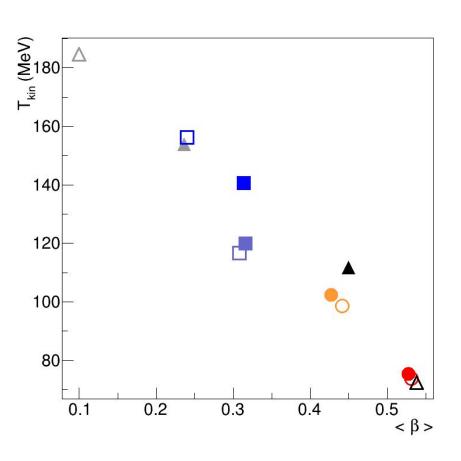
1.5

 m_{τ} - transverse mass ρ (r) = tanh⁻¹ (β) I₀, K₁ - Bessel functions $\beta = 2 * \beta_S / (2+n)$ β_{S} - surface velocity n - exponent of flow velocity profile


Variation of Tkin with <β> for different centralities for 7.7 GeV

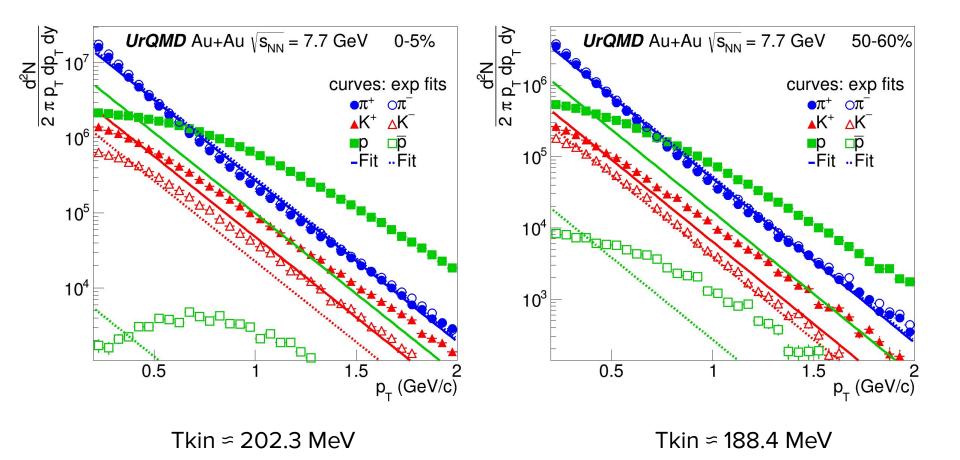
UrQMD Au+Au $\sqrt{s_{NN}} = 7.7 \text{ GeV}$

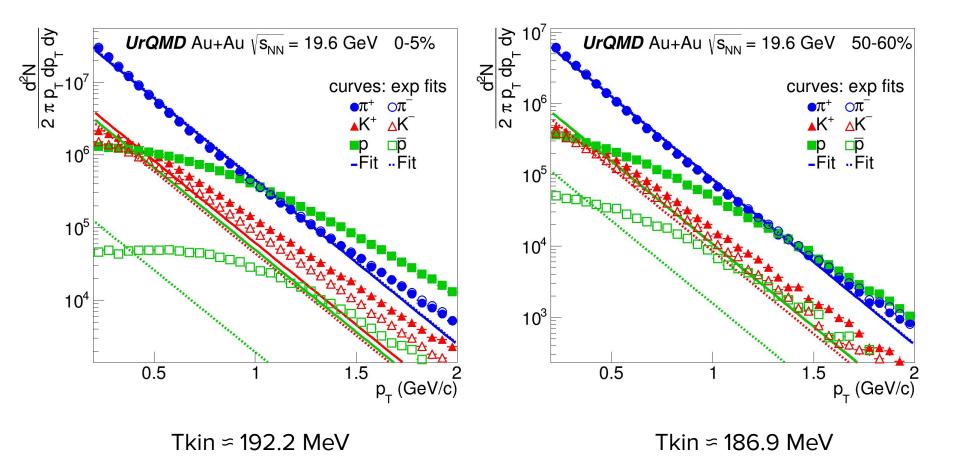
- π^+ , 0-5% **I** K⁺, 0-5% **A** p, 0-5%
- π⁺, 50-60% K⁺, 50-60% ▲ p, 50-60%
- $\bigcirc \pi^-, 0-5\%$ $\square K^-, 0-5\%$ $\triangle \overline{p}, 0-5\%$


Variation of Tkin with <β> for different centralities for 19.6 GeV

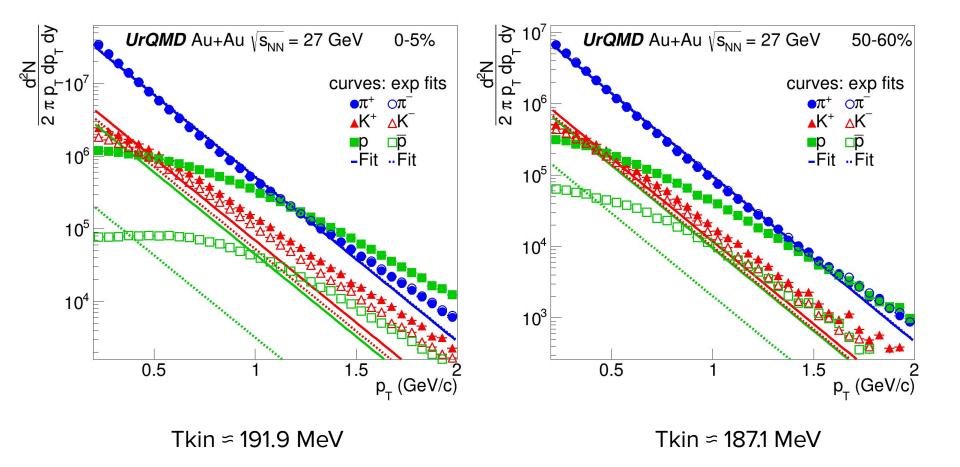
UrQMD Au+Au $\sqrt{s_{NN}} = 19.6 \text{ GeV}$

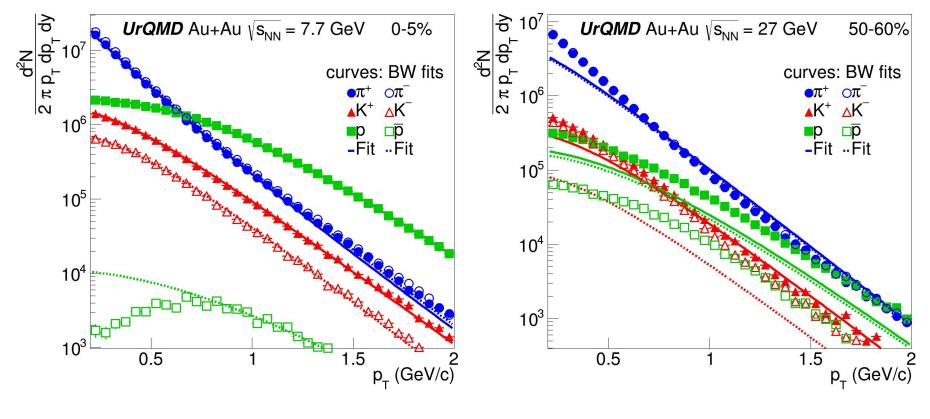
- π⁺, 50-60%
 K⁺, 50-60%
 p, 50-60%
- $\bigcirc \pi^{-}$, 0-5% $\square K^{-}$, 0-5% $\triangle \overline{p}$, 0-5%
- \bigcirc π^- , 50-60% \square K $^-$, 50-60% \triangle \overline{p} , 50-60%


Variation of Tkin with <β> for different centralities for 27 GeV

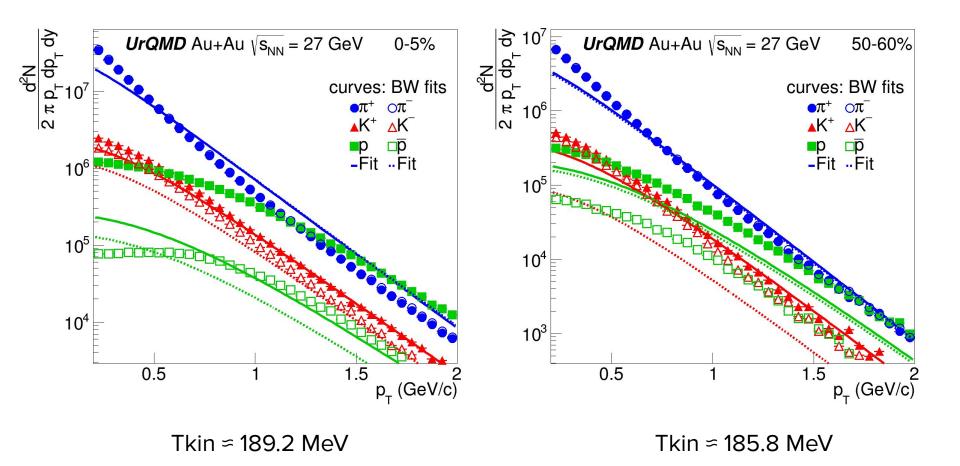

UrQMD Au+Au $\sqrt{s_{NN}} = 27 \text{ GeV}$

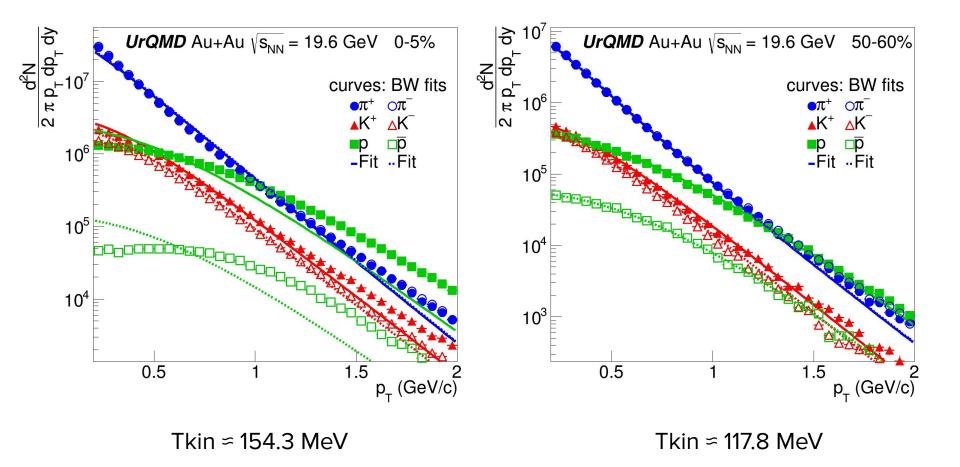
- π^+ , 0-5% **I** K⁺, 0-5% **A** p, 0-5%
- π⁺, 50-60%
 K⁺, 50-60%
 p, 50-60%
- $\bigcirc \pi^{-}$, 0-5% $\square K^{-}$, 0-5% $\triangle \overline{p}$, 0-5%


Exponential fits of $\pi \pm$, $K \pm$, p and $\bar{}$ p pT spectra for 7.7 GeV


Exponential fits of $\pi \pm$, $K \pm$, p and $\bar{}$ p pT spectra for 19.6 GeV

Exponential fits of $\pi \pm$, $K \pm$, p and $\bar{}$ p pT spectra for 27 GeV


Blastwave fits of $\pi \pm$, K \pm , p and $\bar{}$ p pT spectra for 7.7 GeV


Tkin ≈ 98.4 MeV

Tkin = 139.8 MeV

Blastwave fits of $\pi \pm$, $K \pm$, p and $\bar{}$ p pT spectra for 27 GeV

Blastwave fits of $\pi \pm$, $K \pm$, p and $\bar{}$ p pT spectra for 19.6 GeV

