Сравнение модулей органических пластиковых сцинтилляторов детектора реакторных антинейтрино

Студент — Р. Р. Биктимиров $^{1, 2}$ Научный руководитель — Д. В. Попов $^{1, 2}$

 $^{^1}$ Национальный исследовательский центр «Курчатовский институт»

 $^{^2}$ Национальный исследовательский ядерный университет «МИФИ»

Введение

Мотивация:

- проведение независимого мониторинга состояния и состава топлива реактора;
- оценка мощности и дистанционный контроль энерговыработки ядерного реактора.

Цель:

сборка блока модульного детектора реакторных антинейтрино на основе органических пластиковых сцинтилляторов и определение его спектрометрических характеристик.

Задачи:

- определение спектрометрических характеристик каждого отдельного сцинтиллятора;
- ② сравнение сцинтилляторов по их спектрометрическим характеристикам;
- подбор оптимальной конфигурации блока модульного детектора реакторных антинейтрино.

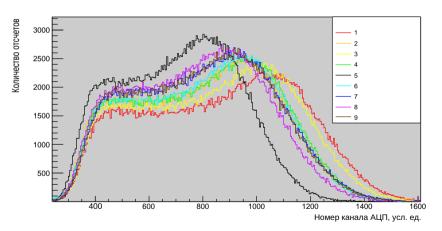
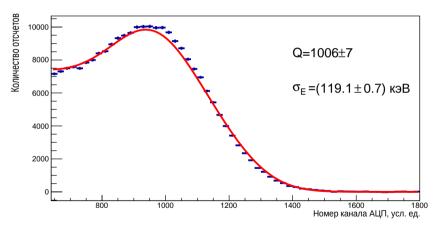


Схема установки

Источник радиоактивного излучения 137 Cs облучает сцинтиллятор размерами $(70 \times 5 \times 5)$ см, обернутый в светоотражатель. Сигнал собирается одним ФЭУ.

Экспериментальные спектры

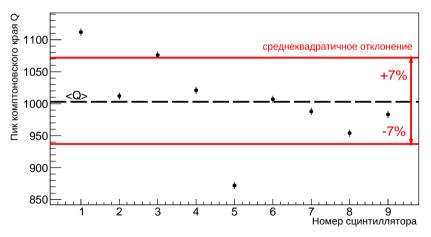
Зарядовые спектры ¹³⁷Cs в точке 35 см для девяти сцинтилляторов



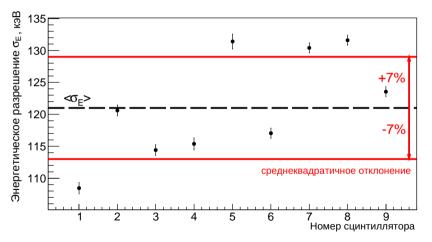
Функция отклика детектора

$$S(Q) = \int\limits_0^{E_{max}} S_{th}(E) \cdot N \cdot \frac{1}{\sqrt{2\pi} \cdot \sigma_E(E)} \cdot e^{-\frac{\left(E - kQ - b\right)^2}{2\sigma_E^2(E)}} \, dE,$$

где $S_{th}(E)$ — спектр по энерговыделению, получаемый методом Монте-Карло; E — энергия; $\sigma_E(E)$ — энергетическое разрешение: $\sigma_E(E) = E \cdot \sqrt{\alpha^2 + \frac{\beta^2}{E} + \frac{\gamma^2}{E^2}}$, где α — параметр, характеризующий неоднородность светособирания детектора; β — статистический параметр, зависящий от числа фотоэлектронов; γ — параметр шумов электроники; k — коэффициент пропорциональности между наблюдаемой энергией E_{vis} и условным зарядом Q в линейном приближении: $E_{vis} = k \cdot Q + b$, где коэффициент e отвечает за смещение нуля по оси энергии; e — нормировка.


Функция отклика детектора

Аппроксимация зарядового спектра $^{137}\mathrm{Cs}$ в точке 35 см


Сравнение модулей

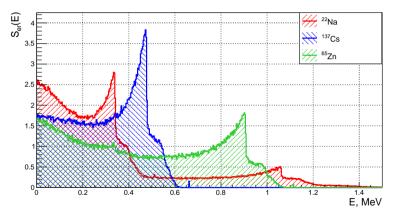
Распределение условного заряда Q для 9 модулей в точке 35 см

Сравнение модулей

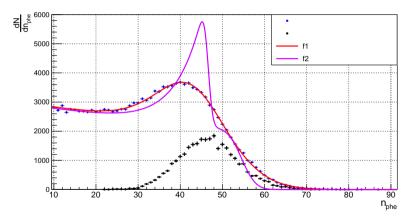
Распределение энергетического разрешения для 9 модулей в точке 35 см

Заключение

В данной работе было произведено сравнение модулей органических пластиковых сцинтилляторов по их спектрометрическим характеристикам. По предварительной оценке: 1) разброс собираемого заряда относительно среднего для 9 модулей составляет


$$\Delta_Q=70$$
 усл. ед., $\frac{\Delta_Q}{< Q>}=7\%$; 2) разброс энергетического разрешения от среднего составляет $\Delta_E=4$ кэВ, $\frac{\Delta_E}{<\sigma_E>}=7\%$.

Спасибо за внимание, до новых встреч!


Дополнительные слайды

Спектры по энерговыделению

Дополнительные слайды

Спектр с разыгранными моно-электронами с энергией комптоновского края

Дополнительные слайды

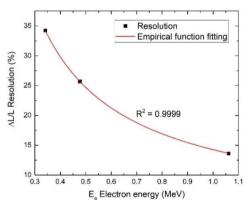
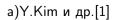
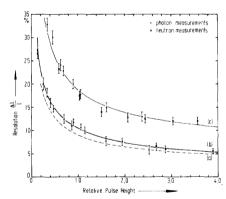




Fig. 4. Energy dependent resolution $\Delta L/L$ for the fabricated plastic scintillator.

б)Klein и Dietze[2]

Дополнительные слайды: список литературы

- 1. Energy Resolution of the Fabricated Plastic Scintillator / Y. Kim [и др.]. 2018.
- 2. Dietze G., Klein H. GAMMA-CALIBRATION OF NE 213 SCINTILLATION COUNTERS // Nuclear Instruments and Methods. 1982.

