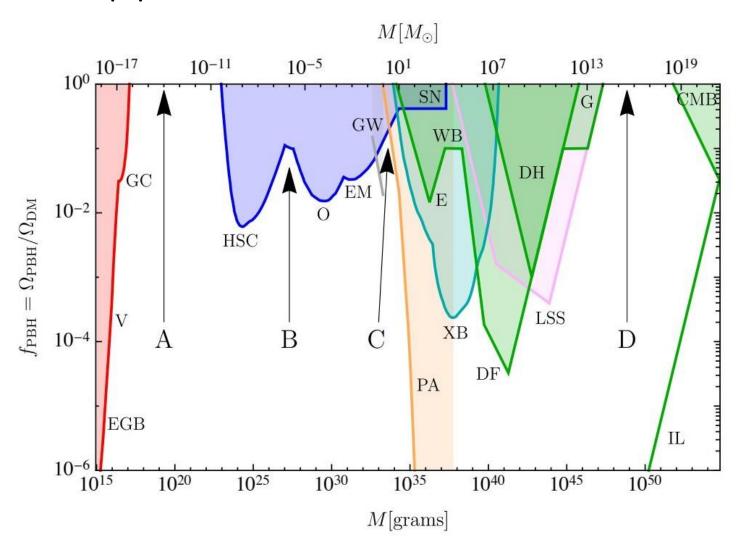
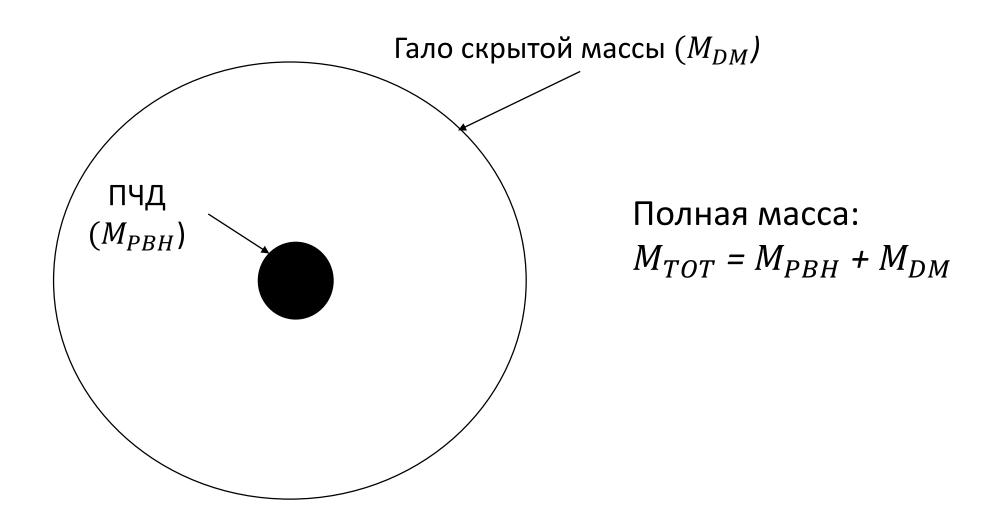
ГАЛО СКРЫТОЙ МАССЫ ВОКРУГ ПЕРВИЧНЫХ ЧЕРНЫХ ДЫР


Научный руководитель: В. Д. Стасенко

Студент: К. М. Кузнецова, Б21-102


Введение

В большинстве космологических моделей скрытая масса является важной составляющей общей плотности массы Вселенной. В свою очередь в ранней Вселенной первичная черная дыра генерирует флуктуацию плотности, когда скрытая масса аккумулируется вокруг первичной черной дыры, образуя гало, эволюция которого представляет интерес.

Введение

Carr B., Kühnel F. Primordial black holes as dark matter candidates // SciPostPhysics Lecture Notes. — 2022. — arXiv:2110.02821 [astro-ph.CO]

Уравнение движения для оболочки радиуса *r*:

$$\ddot{r}=-rac{8\pi G}{3}
ho_R-rac{GM_{
m TOT}}{r^2}$$
 (1) $rac{G}{M_{TOT}}$ - полная масса материи; ho_R - плотность излучения;

$$d\eta = dt/a(t)$$
 (2) $a(\eta)$ – масштабный фактор; $R_{\xi}(\eta)$ – отклонение оболочки от $R = a(\eta)R_{\xi}(\eta)\xi$ (3) $X = a(\eta)R_{\xi}(\eta)$ (3) $X = a(\eta)R_{\xi}(\eta)R_{\xi}(\eta)$

Масштабный фактор $a(\eta)$ удовлетворяет уравнениям:

$$a'^2 = rac{8\pi G}{3} \left(
ho_M +
ho_R
ight) a^4$$
 (4) G — гравитационная постоянная; M_{TOT} - полная масса материи; ho_R - плотность излучения; ho_M - плотность материи; R – отклонение оболочки от Хаббловского потока; R – масштабный фактор; R – сопутствующий размер оболочки;

Уравнение *(1)* примет вид:

$$aR'' + a'R' + \left(\frac{GM_{\text{TOT}}}{\xi^3 R^2} - \frac{4\pi G}{3}a^3\rho_M R\right) = 0$$
 (6)

Параметризация полной массы внутри оболочки:

$$M_{
m TOT} \equiv rac{4\pi}{3}
ho_{eq} a_{eq}^3 \left[1 + \Phi(\xi)
ight] \xi^3$$
 (7) $M_{
m TOT}$ - полная масса материи; $ho_{
m M}$ - плотность излучения;

$$\Phi(\xi) = \delta \rho_M / \rho_M \tag{8}$$

$$x \equiv a/a_{eq} \tag{9}$$

Уравнение (6) примет вид:

$$R$$
 — отклонение оболочки от Хаббловского потока; a_{eq} — масштабный фактор на момент MD-RD перехода; ρ_{eq} — плотность материи на момент

MD-RD перехода; ξ - сопутствующий размер оболочки;

$$x(1+x)\frac{d^2R}{dx^2} + \left(1 + \frac{3}{2}\right)\frac{dR}{dx} + \frac{1}{2}\left(\frac{1+\Phi}{R^2} - R\right) = 0 \tag{10}$$

Условие остановки роста флуктуации:

$$\dot{r} = 0 \Leftrightarrow R + x \frac{dR}{dx} = 0 \quad (11)$$

Параметр уравнения (10):

$$\Phi(\xi) \equiv \frac{\delta \rho_M}{\rho_M} = \frac{M_{DM}}{M_{PBH}} \tag{13}$$

Начальные условия:

$$\dot{R}(x_0) = 0$$

$$R(x_0) = 1$$

$$x_0 \ll 1$$
(12)

 M_{DM} - скрытая масса; M_{PBH} - масса первичной черной дыры (ПЧД); ρ_{M} - плотность материи; R — отклонение оболочки от Хаббловского потока; ξ - сопутствующий размер оболочки;

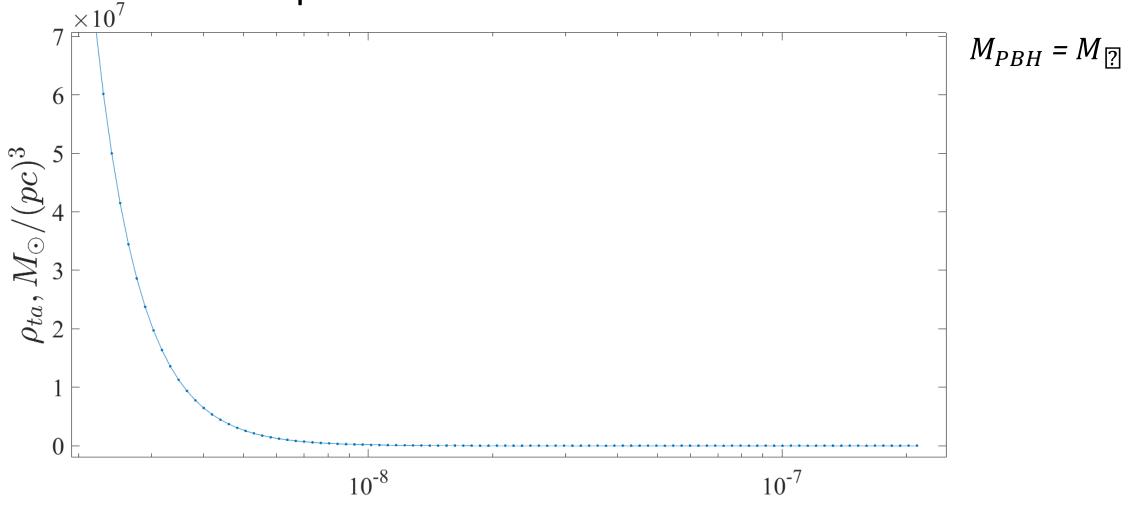
Плотность и радиус на момент остановки:

$$\rho_{ta} = \left(\frac{1}{4\pi r^2}\right) \frac{dM}{dr} \qquad (14) \qquad r = R_{ta} x_{ta} \xi$$

Масштабный коэффициент на момент остановки:

$$x_{ta} = C_x/\Phi \tag{16}$$

M – масса внутри оболочки радиуса r;


 Φ - параметр уравнения;

 R_{ta} — отклонение оболочки от Хаббловского потока на момент остановки;

 x_{ta} – масштабный коэффициент на момент остановки;

 ho_{ta} – плотность материи на момент остановки; ξ - сопутствующий размер оболочки;

(15)

 r_{ta}, pc Рисунок 1. График зависимости плотности сферической оболочки скрытой массы от радиуса остановки.

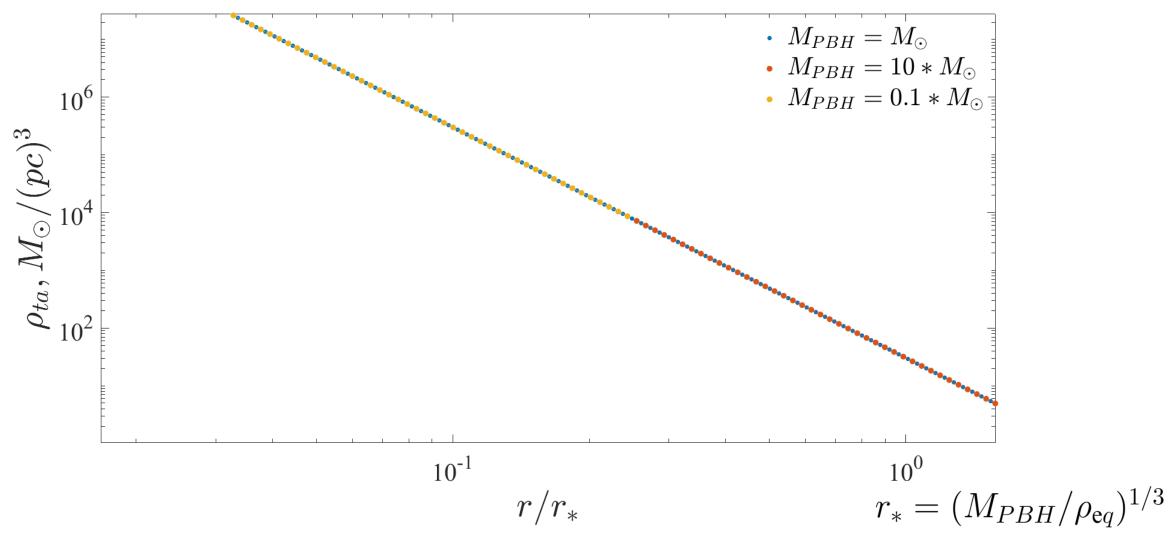


Рисунок 2. График профиля плотности сферической оболочки материи.

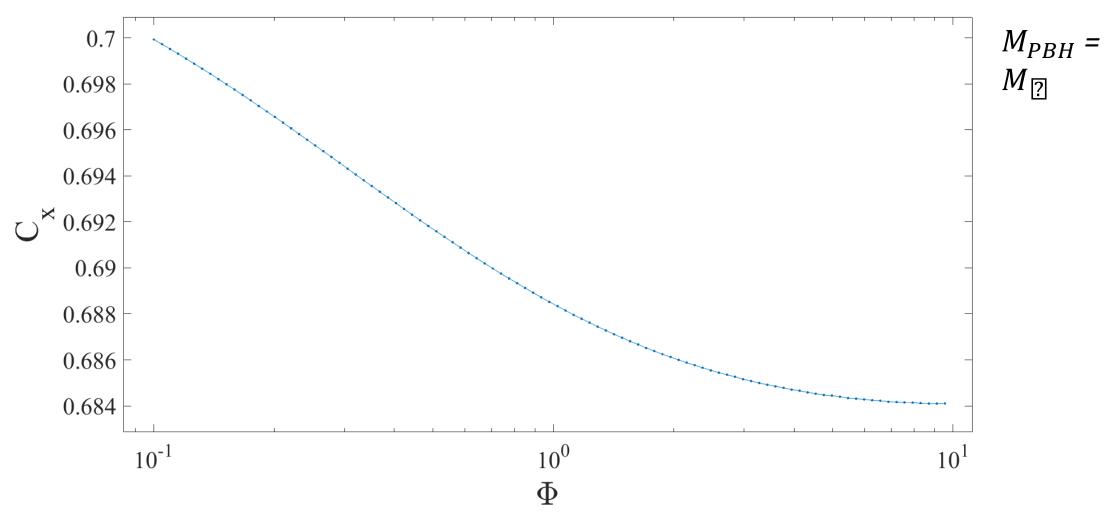


Рисунок 3. График зависимости коэффициента \mathcal{C}_x от параметра $\Phi.$

Остановка роста гало

Масса гало скрытой массы:

$$M_{\rm h} \approx M_{PBH} \frac{1 + z_{\rm eq}}{1 + z} \tag{22}$$

 M_{PBH} — масса ПЧД; z_{eq} = 3402 - красное смещение на момент RD-MD перехода; $\delta_{\rm c}$ = 1.69 - флуктуация плотности;

Доля материи в структурах с массой большей, чем M_h :

$$P_{\rm inf}(M > M_{\rm h}) = 1 - {\rm erf}\left(\frac{\delta_c}{\sqrt{2}\sigma(M_{\rm h})}\right) \tag{23}$$

Остановка роста гало

Доля массы, которая аккумулируется вокруг ПЧД:

$$P_{PBH} = \frac{M_{\rm h} f_{PBH}}{M_{PBH}} \tag{24}$$

 M_{PBH} — масса ПЧД; M_h — масса гало; z_{eq} - красное смещение на момент RD-MD перехода; P_{inf} - доля материи в структурах массой больше, чем M_h ;

Приравниваем правые части уравнений (23) и (24):

$$P_{PBH}(M_{\rm h}(z)) = P_{\rm inf}(M_{\rm h}(z)) \tag{25}$$

Заключение

В данной работе было получено уравнение, описывающее эволюцию гало скрытой массы вокруг первичной черной дыры (10). Реализация решения осуществлялась с помощью метода Рунге-Кутты четвертого порядка, в результате чего для различных значений параметра уравнения Φ были получены зависимости плотности гало скрытой массы от радиуса остановки (рис.1), (рис.2), коэффициента C_x от параметра Φ (рис.3).

Список использованных источников

- 1. Kolb E.W., Tkachev I.I. Large-amplitude isothermal fluctuations and high-density dark-matter clumps // Phys. Rev. D. 1994. July. Vol. 50,issue 2. P. 769–773. arXiv:astro-ph/9403011.
- 2. Kolb E.W., Turner M.S. The Early Universe. Addison-Wesley, RedwoodCity, Ca., 1990.
- 3. Meszaros P. The behaviour of point masses in an expanding cosmological substratum. // Astronomy and Astrophysics. 1974. Dec. Vol. 37,no. 2. P. 225–228.
- 4. Zel'dovich Y. B. N.I. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model // Soviet Astronomy. 1966.
- 5. Carr B., Hawkins M. Black Holes in the Early Universe // Monthly Notices of the Royal Astronomical Society. 1974.

Список использованных источников

- 6. Carr B., Silk J. Primordial Black Holes as Generators of Cosmic Structures //Mon. Not. Roy. Astron. Soc. 2018. Vol. 478, no. 3. P. 3756–3775. arXiv: 1801.00672 [astro-ph.CO].
- 7. Press W.H., Schechter P. Formation of Galaxies and Clusters of Galaxies bySelf-Similar Gravitational Condensation // Astrophys. J. 1974. Feb. —Vol. 187. P. 425–438.
- 8. Bardeen J.M., Bond J.R., Kaiser N., Szalay A.S. The Statistics of Peaks of Gaussian Random Fields // Astrophys. J. 1986. Vol. 304. P. 15–61.
- 9. Mo H.J., White S.D.M. The Abundance and clustering of dark haloes in the standard lambda-CDM cosmogony // Mon. Not. Roy. Astron. Soc. —2002. Vol. 336. P. 112. arXiv: astro-ph/0202393.

Аналитическое решение

Радиус остановки роста сферического слоя:

$$r_{
m ta} \simeq rac{2r_{
m eq}}{5\delta_{
m eq}} = rac{8\pi
ho_{
m eq}r_{
m eq}^4}{15M_{PBH}}$$
 (17) $rac{M_{PBH}$ – масса ПЧД; $\delta_{
m eq}$ - флуктуация плотности; $r_{
m ta}$ – радиус оболочки на момент остановки; $r_{
m eq}$ – радиус оболочки на момент RD-MD перехода; $\rho_{
m eq}$ – плотность материи на момент RD-MD перехода; МD перехода;

$$dM = \left(\frac{15 \, M_{PBH}}{4}\right)^{3/4} \left(\frac{\pi \rho_{eq}}{r}\right)^{1/4} dr \tag{19}$$

Аналитическое решение

Профиль плотности:

$$\rho(r) = \left(\frac{15M_{PBH}}{16\pi}\right)^{3/4} \left(\frac{\rho_{eq}}{4}\right)^{1/4} r^{-9/4} \quad (20)$$

$$r_* = (M_{PBH}/\rho_{eq})^{1/3}$$
 (22)

$$ho pprox 0.29 \,
ho_{\mathrm{e}q} \left(rac{r}{r_*}
ight)^{-9/4}$$
 (21)

 M_{PBH} – масса ПЧД;

 r_{eq} — радиус оболочки на момент RD-MD перехода;

 ho_{eq} – плотность материи на момент RD-MD перехода;

Остановка роста гало

Дисперсия флуктуации материи на массовом масштабе M_h :

$$\sigma^2(M_h, z) = D^2(z) \int \frac{dk}{2\pi^2} k^2 P(k) W^2(kR)$$
 (26)

Спектр мощности:

$$P(k) = A T^2(k) k^{n_s} \tag{27}$$

Описание линейного роста флуктуаций плотности:

$$D(z) = g(z)/[g(0)(1+z)]$$
(28)

Сферическая оконная функция в импульсном пространстве:

$$W(kR) = \frac{3(\sin kR - kR\cos kR)}{(kR)^3} \tag{29}$$