

Регистрация мюонов космических лучей на подземном детекторе большого объема

Слуцкая О.Ю.

МИФИ, ИЯИ РАН

Научный руководитель: Н.Ю. Агафонова (ИЯИ РАН)

Космические лучи

Мюонная загадка в КЛ

Мюонная загадка – загадка в физике космических лучей, связанная с наблюдаемым избытком мюонов в ШАЛ при сверхвысоких энергиях (выше 10¹⁷ эВ). Причем этот избыток возрастает с увеличением энергии первичных частиц (с увеличением зенитного угла). Согласно существующим теориям, при развитии ШАЛ образуется определенное количество мюонов, но экспериментальные данные значительно превышают теоретические предсказания.

Мюонная загадка в КЛ

ALEPH Ν 10% 105 700 104 600 103 500 10² 400 101 300 200 10 10-1 ∟ 10⁰ 100 30 < 9 < 60 множественность DELPHI model 3a flux 1b в ШАЛ data number of events proton SUGAR 102 10

integrated multiplicity

НЕВОД-ДЕКОР

Эксперимент **NEVOD-DECOR** показал увеличение плотности мюонов по сравнению с **моделированием** с 10¹⁵ до 10¹⁸ эВ в 2010 году. 10¹⁷ эВ наблюдалось Выше превышение ожидаемого количества многомюонных событий при энергиях около 10¹⁸ эВ, и в качестве объяснения был предложен дефицит моделировании. Эксперименты мюонов В KASCADE-Grande и EAS-MSU показали отсутствие мюонного расхождения в ЭТОМ диапазоне энергий, когда для моделирования воздушных ливней использовались новейшие модели адронного взаимодействия, настроенные на данные БАК, в то время как SUGAR array сообщил о дефиците мюонов даже для этих моделей.

Мюонная загадка

Как видно из рисунка, во многих экспериментах, в особенности самых крупных, в области энергий выше 10^{17} эВ наблюдается этот избыток мюонов.

Объединенные результаты

$$z = \frac{\ln(N_{\mu}^{det}) - \ln(N_{\mu}^{sim,p})}{\ln(N_{\mu}^{sim,Fe}) - \ln(N_{\mu}^{sim,p})}$$

ПКЛ

 N_{μ}^{det} – полученное в эксперименте число мюонов $N_{\mu}^{sim,p}$ ожидаемое число мюонов, было должно которое получиться в эксперименте при чисто протонном составе ПКЛ $N_u^{sim,Fe}$ ожидаемое число мюонов, должно было которое получиться в эксперименте при чисто железном составе

Схема установки LVD

Ионизационные потери в сцинтилляторе

Ионизационные потери высокоэнергетичных мюонов рассчитываются по следующей формуле:

$$\left(-\frac{d \, \mathrm{E}}{d x}\right)_{_{\mathrm{HOHH3}}} = \frac{\mathrm{L}}{\beta^2} \left[\mathrm{B} + 0.69 + 2 \ln \left(\frac{\mathrm{p}}{\mathrm{m}_{\mu} \mathrm{c}^2}\right) + \ln \left(\frac{\mathrm{E}_{\mathrm{m}}}{\mathrm{m}_{\mu} \mathrm{c}^2}\right) - 2\beta^2 - \delta \right]$$
 где
$$\frac{\mathrm{E}_{\mathrm{m}}^{'}}{\mathrm{E} + (\mathrm{m}_{\mu}^2 \mathrm{c}^2/2\mathrm{m}_e)} , \qquad \mathrm{p} = \sqrt{\mathrm{T}(\mathrm{T} + 2\mathrm{m}_{\mu}\mathrm{c}^2)} , \qquad \delta = 4,606 \mathrm{lg} \left(\frac{\mathrm{p}}{\mathrm{m}_{\mu}\mathrm{c}}\right) - \mathrm{c} , \qquad \beta = 1,$$
 B=18,95 MэB/(г/см2), L=0,0876 MэB/(г/см2), C=2,94, T=280 ГэВ (перевести в МэВ), m=105 MeB.

Средняя энергия мюонов, проходящих через установку ~280 ГэВ, тогда:

$$\left(-\frac{d E}{dx}\right)_{\text{иониз}} = 2.49 \frac{M \Im B}{\Gamma \times c M^{-2}}$$

Расстояние, которое проходит мюон в счетчике определяется как: $x = \frac{E}{2,49 \cdot \rho}$ Максимальное расстояние в счетчике ~ 2 м., энергия мюона ≈ 390 Мэв.

Формат записи данных LVD

	RUN	SEO Nu	umber	date(6	5)	Uc	late	Utime	ทเ	um. of c	ounters
			дд,мм,гг,чч,ми,ск						Ļ		
	56119	255	55	30	8 22 13 0 1	1 30	0114	46811.22	265275028	12	
	1157	0.22	689450	000	19.32999	99237	0.0	1.547	70		
	1357	0.22	652686	525	169.09617	00658	1.0	0.000	00		
	1466	0.22	652685	500	2807.65878	95071	1.0	338.916	88		
	1464	0.22	652717	750	30.40999	98474	0.0	2.847	66		
	1466	0.22	653992	250	16.46999	93134	0.0	1.988	12		
	1466	0.22	654092	250	3.469999	93134	0.0	0.418	87		
4	1466	0.22	654211	L25	1.469999	93134	0.0	0.177	45		
	1466	0.22	654752	250	2.469999	93134	0.0	0.298	16		
	1474	0.22	652687	750	98.50443	91418	0.0	8.053	29		
	1473	0.22	652683	375	3803.02015	34691	1.0	246.528	09		
	1471	0.22	710200	000	18.03000	06866	0.0	1.351	89		
	1471	0.22	734921	L25	13.03000	06866	0.0	0.9769	99		
	TCLP	tii	me, ns		ADC, кан	алы	Trig	g Energ	y, MeV		

Распределение энерговыделений в одном счетчике LVD

Это распределение имеет характерный максимум – так называемый мюонный пик в районе 185 МэВ. Эта энергия соответствует наиболее вероятной длине трека мюона при прохождении мюона через счетчик.

Распределение суммарных энерговыделений в мюонном событии

Область небольших значений соответствует мюонам, прошедшим через края детектора.

Область больших суммарных энерговыделений – это события, в которых зарегистрированы группы мюонов и электромагнитные и ядерные ливни, рожденные мюоном.

Распределение времени срабатывании счетчиков в мюонном событии

В рамках этой работы было получено, что время между срабатываниями счетчиков в событии не превышает 200 нс.

В анализе этих данных использовалась статистика за 80 суток работы детектора. Отобраны события, в которых сработало больше, чем 20 счетчиков.

Реконструкция мюонных событий

• Переход к новой декартовой (Dec2) системе координат с центром посредине между восемью угловых счетчиков LVD.

- Строим сферическую систему (Spher1) координат– координаты точки в ней: ρ , θ , φ .
- Строим куб ребром $2R_0$ в Dec2 и сферу с диаметром $2R_0$ в Spher1.
- Разыгрываем случайно (Монте-Карло) точку в объеме куба (равномерно по объему) и смотрим находится точка внутри сферы если да: принимаем точку *x*₀, *y*₀, *z*₀.
- Получаем вектор случайного направления: $\vec{v_0} = (x_0, y_0, z_0)$
- Продолжим этот вектор до пересечения со сферой: $(k \cdot x_0)^2 + (k \cdot y_0)^2 + (k \cdot z_0)^2 = R_0^2$
- Случайная точка на сфере: $\vec{v} = (k \cdot x_0, k \cdot y_0, k \cdot z_0) = (x, y, z)$

• Пусть вектор \vec{v} является вектором направления группы мюонов. Допустим сработали n счетчиков с номерами i = (1, n). В каждом счетчике E_i в МэВ и относительное местное время прихода импульса t_{iTDC} в nS.

• Общее уравнение плоскости в Dec2: $A \cdot x + B \cdot y + C \cdot z + D = 0$

• Построим уравнение плоскости, проходящей через точку P(x_1, y_1, z_1) и перпендикулярную вектору $\vec{v}(x_1, y_1, z_1)$ (плоскость касательная к сфере): $x_1 \cdot (x - x_1) + y_1 \cdot (y - y_1) + z_1 \cdot (z - z_1) = 0$. А= x_1 , В= y_1 , С= z_1 . Или уравнение плоскости: $A \cdot x + B \cdot y + C \cdot z + D = 0$ (плоскость α_1) А= x_1 , В= y_1 , С= z_1 , D = ($-x_1^2, -y_1^2, -z_1^2$).

- Все мюоны в группе будут падать на эту плоскость перпендикулярно.
 - Расстояние от центра i-го счетчика до плоскости α_1 равно: $d_i = \frac{|A \cdot x_i + B \cdot y_i + C \cdot z_i + D|}{\sqrt{A^2 + B^2 + C^2}}$

• Дополнительное время пролета мюона от счетчика і до плоскости α_1 равно: $t_{d_i} = \frac{d_i}{c}$ (*nS*), с – скорость света (если мюон очень релятивистский). Таким образом время прихода мюона на плоскость α_1 равно: $t_{i\alpha_1} = t_i + t_{d_i}$ (*nS*)

• В нашем предположении, случайно выбранный вектор \vec{v} попал на направление группы мюонов. Это конечно же не так и величина f (\vec{v}) будет больше. Мы приходим к задаче двумерной минимизации функции f (\vec{v}) = f (θ, φ).

Заключение

Основные результаты работы, полученные в данной работе, можно сформулировать следующим образом:

- Детектор LVD является хорошим инструментом для исследований мюонов космических лучей, приходящих на глубину от 3 до 12 км в.э.
- Имеется обширная статистика за период с 2001 по 2022 год, когда ввели в строй набора статистики три башни установки.
- Анализируя экспериментальные данные, можно получить такие характеристики мюонов, как их интенсивность, угловое и энергетическое распределение, кратность мюонных групп и кривую раздвижения (распределение по расстоянию мюонов в группах).
- На основе имеющейся статистики были построены: распределение энерговыделений в одном счетчике, распределение суммарных энерговыделений в одном событии и распределение времени срабатывания счетчиков.
- Разрабатывается алгоритм реконструкции мюонных событий (направление угла прихода мюонов) в LVD без стрипповой системы с привлечением времени срабатывания счетчиков.

Список литературы

- 1. Петрухин А.А. Мюонная загадка в космических лучах и возможности ее решения. ЯДЕРНАЯ ФИЗИКА, 2021, том 84, № 1, с. 77-84.
- 2. Воробьев В.С. Исследование многочастичных событий в космических лучах на прототипах координатно-трекового детектора трек: дис. канд. физ.-мат. наук. М., 2022.
- 3. Юрина Е.А. и др. Статус эксперимента НЕВОД-ДЕКОР по исследованию энерговыделения групп мюонов, Изв. РАН,Сер. Физ., т. 85, № 4 (2021), с. 594–597.
- 4. Heck D., Knapp J., Capdevielle J.N. et al. // Report FZKA 6019. Karlsruhe: Forschungszentrum, 1998. 90 p.
- 5. Ostapchenko S. // Phys. Rev. D. 2011. V. 83. Art. No. 014018.
- 6. H.P. Dembinski et al. Report on tests and measurements of hadronic interaction properties with air showers. EPJ Web Conf. 210, 02004 (2019).

Спасибо за внимание!