Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

> Институт ядерной физики и технологий Кафедра №40 «Физика элементарных частиц»

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

МОДЕЛИРОВАНИЕ ПРОЦЕССА АССОЦИАТИВНОГО РОЖДЕНИЯ БОЗОНА ХИГГСА С ОДИНОЧНЫМ ТОП-КВАРКОМ НА БОЛЬШОМ АДРОННОМ КОЛЛАЙДЕРЕ

Научный руководитель	
к.фм.н.	Н. А. Гусейнов
Научный консультант	
к.фм.н.	И. Р. Бойко

Студент

_____ А. Э. Дадашова

СОДЕРЖАНИЕ

Bı	Введение З				
1	1 Исследования процесса $pp \rightarrow tH$ на БАК				
2 Генерация и реконструкция событий					
	2.1	Реконструкция нейтрино	7		
	2.2	Струи от b-кварков	9		
	2.3	Реконструкция масс топ-кварка и бозона Хиггса	11		
	2.4	Передняя струя	16		
За	клю	чение	17		
Cı	Список литературы				

ВВЕДЕНИЕ

Построение Стандартной модели (СМ) завершилось открытием бозона Хиггса в экспериментах ATLAS (A Toroidal LHC ApparatuS) и CMS (Compact Muon Solenoid) на Большом Адронном колайдере (БАК) [1, 2], поэтому в настоящее время эксперименты в области физики элементарных частиц направлены преимущественно на прецизионное измерение параметров СМ и поиск «новой физики» – явлений, не описывающихся СМ и выходящих за рамки ее теоретических предсказаний.

Две самые тяжелые частицы Стандартной модели – бозон Хиггса и топ-кварк, изучены с относительно невысокой точностью, поэтому исследование взаимодействия между ними представляет особый интерес, так как позволит лучше понять природу бозона Хиггса и, возможно, откроет дверь в «новую физику».

1. ИССЛЕДОВАНИЯ ПРОЦЕССА $pp \to tH$
 НА БАК

Основными каналами рождения бозона Хиггса в протон-протонных столкновениях, наблюдаемыми на БАК, являются (рис.1):

- $gg \to H$ (глюонное слияние);
- $VV \rightarrow H$ (слияние векторных бозонов, далее V W или Z бозоны);
- $pp \rightarrow VH$ (совместное рождение с векторным бозоном);
- $pp \rightarrow ttH$ (совместное рождение с парой топ-кварков).

Рисунок 1 — Диаграммы в низшем порядке теории возмущения, дающие основной вклад в процессы рождения бозона Хиггса с указанием брэнчинга

Следующий по величине сечения канал рождения бозона Хиггса – рождение совместно с одиночным топ-кварком, в настоящее время все еще не обнаружен на БАК.

Сила взаимодействия между бозоном Хиггса и топ-кварком определяется константой Юкавы y_t . Если ее абсолютная величина была измерена в процессе $pp \rightarrow ttH$ [3,4], то комплексная фаза до сих пор неизвестна и может быть получена путем анализа процесса $pp \rightarrow tH$, диаграмма которого приведена на рисунке 2 и представляет собой в рамках первого порядка теории возмущения сумму двух диаграмм, соответствующих рождению бозона Хиггса в вершинах ttH и WWH. В СМ эти диаграммы деструктивно интерферируют из-за того, что их комплексные фазы противоположны [5]. Однако существует модель (Инвертированное взаимодействие топ-кварка, ИВТ), в которой комплексная фаза y_t изменена на 180°, что приводит к конструктивной интерференции диаграмм и, как следствие, увеличению сечения реакции более чем на порядок (рис.3) [6]. Поэтому исследуемый процесс рождения бозона Хиггса с одиночным топ-кварком чувствителен к знаку константы взаимодействия Юкавы, что позволяет проверить предсказания СМ и ИВТ.

Рисунок 2 — Диаграммы $pp \rightarrow tH$ в первом порядке теории возмущения

Рисунок 3 — Зависимость сечений процессов $pp \to tH$ и $pp \to ttH$ от комплексной фазы константы Юкавы

Основной проблемой анализа редких процессов является высокий уровень фона на БАК. Например, инклюзивное сечение рождения b-кварков на БАК на восемь порядков превосходит сигнальный процесс tH, для которого также характерно наличие b-кварков в конечном состоянии [7,8]. Поэтому наиболее оптимальным каналом исследования для данной реакции является мода, в которой топ-кварк распадается по полулептонному каналу ($t \rightarrow l\nu b$), а бозон Хиггса - по своему основному каналу ($H \rightarrow bb$), на который приходится 58% всех распадов. Такие события характеризуются наличием заряженного лептона с большим поперечным импульсом и значительной недостающей поперечной энергией, уносимой нейтрино.

Следует отметить, что с развитием и усложнением экспериментальных установок усложняется и физический анализ, так как становится необходимо учитывать не только распределения измеряемых физических величин, но и корреляции между ними. Одним из способов улучшения качества анализа экспериментальных данных является применение методов машинного обучения.

Поэтому целью данной работы является предоставление смоделированных данных рождения бозона Хиггса совместно с одиночным топ-кварком и его фоновых процессов для обучения нейронной сети, чтобы оптимизировать критерии выделения сигнального процесса на БАК.

2. ГЕНЕРАЦИЯ И РЕКОНСТРУКЦИЯ СОБЫТИЙ

В данной работе события сигнального и фоновых процессов моделировались Монте-Карло (MC) генератором MadGraph5_aMC@NLO (v3.5.5) [9] в первом порядке теории возмущения. Распределение партонов в сталкивающихся пучках описывалось библиотекой СТ10 из LHAPDF (v6.3) [10]. Развитие партонных ливней и адронизация моделировались MC Pythia (v8.310) [11]. Для кластеризации струй использовался пакет FastJet (v3.4.3) [12].

Была поставлена задача сгенерировать события без моделирования экспериментальной установки в формате насколько это возможно близком к формату экспериментальных данных. Поэтому объекты, с которыми проводилась работа и о которых записывалась информация – это заряженные лептоны, нейтрино и струи.

Естественным требованием на запись события является наличие трех или четырех b-струй (см. рис.2). Дополнительные условия, которым должно удовлетворять смоделированное событие, чтобы быть записанным в сгенерированную базу данных:

- *p*^{lead} > 27 ГэВ, где *p*^{lead} поперечный импульс лидирующего лептона (заряженный лептон с наибольшим поперечным импульсом); данное ограничение соответствует одному из триггеров на запись события с заряженным лептоном в эксперименте ATLAS.
- $\bullet \; |\eta^{lead}| \; < \; 2.7,$ где $\; \eta^{lead} \; \;$ псевдобыстрота лидирующего лептона; учет

геометрии детектора ATLAS.

p_T^{ν,reco} ≥ 10 ГэВ, где *p_T^{ν,reco}* – поперечный импульс реконструированного нейтрино; недостающий поперечный импульс восстанавливается в эксперименте ATLAS с разрешением порядка 10 ГэВ.

В таблице 1 предоставлена информация о количестве смоделированных и отобранных для записи в базу данных событиях для сигнального и фоновых процессов.

Таблица 1 — Количество смоделированных и отобранных для записи в базу данных событий для сигнального и фоновых процессов

Процесс	N^{events}	$3 \le N^{b-jet} \le 4$	$p_T^{lead} > 27 \ \Gamma$ əB, $ eta^{lead} < 2.7, \ p_T^{\nu,reco} \ge 10 \ \Gamma$ əB
tHbq	100 000	31 303	23 510
tt	1 000 000	10 933	7308
ttbb	100 000	16 236	11 096
ttZ	100 000	38 336	26 059
ttH	100 000	38 148	26 862
tZbq	100 000	25 838	16 334

2.1. РЕКОНСТРУКЦИЯ НЕЙТРИНО

Поперечный импульс нейтрино реконструировался как вектор, противоположный суммарному поперечному импульсу всех струй и заряженных лептонов.

$$E_T^{miss,x} = -\sum p_{charged\ lepton}^x - \sum p_{jet}^x \tag{2.1}$$

$$E_T^{miss,y} = -\sum p_{charged\ lepton}^y - \sum p_{jet}^y \tag{2.2}$$

$$E_T^{miss} = p_T^{\nu} = \sqrt{(E_T^{miss,x})^2 + (E_T^{miss,y})^2}$$
(2.3)

Для определения продольной компоненты импульса нейтрино инвариантная масса лидирующего лептона и нейтрино приравнивалась к номинальной массе W-бозона ($m_W = 80.35 \ \Gamma \Rightarrow B$).

$$(p_{lead} + p_{\nu, reco})^2 = m_W^2, \qquad (2.4)$$

где $p_{lead}, p_{\nu,reco}$ – четыре-импульсы лидирующего лептона и нейтрино соответственно.

Уравнение 2.4 имеет два решения:

$$p_{\nu,reco}^{z,\pm} = \frac{1}{(p_T^{lead})^2} \left(\mu p_{lead}^z \pm E_{lead} \sqrt{\mu^2 - (p_T^{lead} E_T^{miss})^2} \right),$$
(2.5)

где $\mu = \frac{m_W^2}{2} + p_{lead}^x E_T^{miss,x} + p_{lead}^y E_T^{miss,y}$

Информация о том, какое из двух имеющихся решений выбиралось для дальнейшей работы с смоделированными данными будет представлено ниже.

На рисунке 4(а) приведено двумерное распределение по продольной компоненте импульса смоделированного и реконструированного нейтрино. Каждое событие представлено двумя точками для правильного (точки по диагонали) и неправильного (точки, образующие «крест») решения. На рисунке 4(б) представлено двумерное распределение по поперечной компоненте импульса смоделированного и реконструированного нейтрино. Ориентированность точек преимущественно вдоль диагонали указывает на то, что реконструкция нейтрино в данной работе осуществляется корректно.

Рисунок 4 — Двумерное распределение распределение а) по продольной компоненте, б) по поперечной компоненте импульса смоделированного и реконструированного нейтрино

2.2. СТРУИ ОТ В-КВАРКОВ

Как было упомянуто выше, кластеризация и реконструкция струй из смоделированных фотонов и долгоживущих адронов была осуществлена с помощью пакета FastJet.

«Объединение» частиц в струю осуществляется следующим образом: четыре-импульс струи определяется как сумма четыре-импульсов всех частиц, приписанных данной струе, и в настоящее время именно эта схема используется во всех экспериментах на БАК.

Кластеризация струй проводилась при помощи алгоритма anti-KT [13] со следующими параметрами: минимальный поперечный импульс струи $p_T^{min} = 20$ ГэВ, характерная ширина струи R = 0.5, диапазон псевдобыстрот всех струй $|\eta| < 5.0$. Мера расстояния в этом алгоритме между *i*-ой и *j*-ой частицами определяется по формуле:

$$d_{ij} = \min\left(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,j}^2}\right) \frac{\Delta R_{ij}^2}{R^2}$$
(2.6)

где $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}.$

Если d_{ij} оказывается меньше, чем $d_{iB} = 1/p_{T,i}^2$, то частицы *i* и *j* объединяются в новый кластер, в обратном случае – частица *i* объявляется центром финальной струи и не рассматривается более алгоритмом кластеризации. Благодаря зависимости $d_{ij} \sim 1/p_T^2$ более высокоэнергетичные частицы оказывают минимальное влияние на процесс объединения, в результате чего струи образованные данным алгоритмом имеют почти идеальную круглую форму в (y, ϕ) пространстве.

Метка «b-струя» приписывалась струе только в том случае, если расстояние между импульсом b-кварка и импульсом струи $\Delta R < 0.1$ и отношение энергии струи к энергии b-кварка лежит в диапазоне $0.5 \leq \frac{E_j}{E_b} \leq 1.5$.

Основным фоновым процессом исследуемого канала рождения бозона Хиггса является $pp \rightarrow tt$, с учетом требования одного заряженного лептона канал распада имеет вид $pp \rightarrow tt \rightarrow (bl\nu)(bqq')$ и в первом приближении фоновый процесс может быть подавлен условием на наличие как минимум трех b-струй в событии, однако в реальности из-за ограниченной точности экспериментальных установок струя от с-кварка с вероятностью 12% мо-

жет быть идентифицирована как b-струя (с вероятностью 0.3% от других кварков) в экспериментах ATLAS [14] и CMS [15]. Этот эффект был учтен при моделировании процесса $pp \rightarrow tt$.

В используемом для адронизации MC Pythia существует свой встроенный класс для кластеризации и реконструкции струй – SlowJet, основной недостаток которого отражен в его названии – он очень медленный. В данной работе было проведено сравнение эффективности реконструкции b-струй от топ-кварка, бозона Хиггса и глюона в зависимости от поперечного импульса и псевдобыстроты b-кварков между FastJet и SlowJet. Из рисунка 5 видно, что оба класса по эфективности реконструкции мало чем отличаются друг от друга, однако FastJet затрачивает меньше временных ресурсов и предоставляет больше инструментов для работы со струями, чем SlowJet, поэтому в данной работе используется именно этот пакет.

Рисунок 5 — Эффективность реконструкции b-струй в зависимости от поперечного импульса (a,б,в,г) и от псевдобыстроты (д,е,ж,з) b-кварка от топ-кварка, бозона Хиггса и спектатора соотвественно

2.3. РЕКОНСТРУКЦИЯ МАСС ТОП-КВАРКА И БОЗОНА ХИГГСА

Исследуемый процесс: $pp \rightarrow tHbq \rightarrow (bl\nu)(bb)bq$. Масса топ-кварка реконструируется из лидирующего лептона, нейтрино и b-струи, масса бозона Хиггса восстанавливается из оставшихся двух b-струй. Если число b-струй в событие равно четырем, то исходя из распределения по поперечному импульсу b-струй (рис.6), отбор трех из них с наибольшим p_T должен выбросить b-струю от спектатора, потому что преимущественно она имеет наименьший поперечный импульс.

Рисунок 6 — Распределение по поперечному импульсу b-труй для процесса $pp \to t H b q$

Из трех b-струй и двух решений для импульса нейтрино можно составить шесть комбинаций для реконструкции масс топ-кварка и бозона Хиггса (рис.7), для каждой из которой рассчитывалась величина χ^2 по формуле:

$$\chi^2 = \left(\frac{m_{bb} - m_H}{\sigma_H}\right)^2 + \left(\frac{m_{bl\nu} - m_t}{\sigma_t}\right)^2,\tag{2.7}$$

где параметры $m_H, m_t, \sigma_H, \sigma_t$ определялись путем фитирования распределений для реконструированных масс, соответствующих правильной комбинации (рис.8).

Рисунок 7 — Распределения реконструированной массы а)
топ-кварка, б)бозона Хиггса для всех комбинаций для процесса
 $pp \to tHbq$

Рисунок 8 — Распределения реконструированной массы а)топ-кварка, б)бозона Хиггса для правильной комбинации для процесса $pp \to tHbq$

Реконструированные массы записывались для комбинации, соответствующей наименьшему χ^2 . Хвосты в распределениях на рис.9 объясняются тем, что из отобранных для записи событий примерно в половине случаев в набор трех b-струй, из которых реконструируются массы топ-кварка и бозона Хиггса, входит b-струя от спектатора. Наглядно это можно увидеть по распределениям на рис.10, где рассматривались только те события, для которых набор b-струй не содержит b-струю от спектатора, так как в этих случаях хвосты отсутствуют.

Рисунок 9 — Распределения реконструированной массы а)топ-кварка, б)бозона Хиггса для комбинации, соответствующей наименьшему χ^2 , для процесса $pp \to tHbq$

Рисунок 10 — Распределения реконструированной массы а)топ-кварка, б)бозона Хиггса для комбинации с правильным набором b-струй, соответствующей наименьшему χ^2 , для процесса $pp \to tHbq$

Распределения реконструированных масс топ-кварка и бозона Хиггса для комбинации, соответствующей наименьшему χ^2 , для сигнального и всех смоделированных фоновых процессов представлены на рис.11.

Рисунок 11 — Распределения реконструированной массы а)топ-кварка, б)бозона Хиггса для комбинации, соответствующей наименьшему χ^2 , для всех смоделированных процессов

Практически полное отсутствие хвоста в распределениях на рисунке 11 для процесса $pp \rightarrow tt$, а также близкое к сигнальному процессу значение реконструированной массы «Хиггса» объясняется отсутствием четвертой b-струи и тем, что b и с-струи, из которых восстанавливается бозон «Хиггса», несут кинетические энергии, равные примерно половине массы топ-кварка и W-бозона, что соответствует значениям, близким к массе бозона Хиггса, что видно по распределению по инвариантной массе b и с кварков из адронного топ-кварка (рис.12).

Рисунок 12 — Распределение по инвариантной массе b и с кварков из адронного топ-кварка

Также были построены двумерные распределения масс топ-кварка и бозона Хиггса, соответствующих наименьшему χ^2 , для всех смоделированных процессов (рис.13), пики в области правильных масс указывают на корректную реконструкцию масс для всех рассматриваемых в данной работе процессов.

Рисунок 13 — Двумерные распределения реконструированных масс топкварка и бозона Хиггса, соответствующих наименьшему χ^2 , для всех смоделированных процессов

2.4. ПЕРЕДНЯЯ СТРУЯ

В процессе $pp \to tH$ рождается «кварк-наблюдатель» (см. рис.2), импульс которого в основном направлен в сторону больших абсолютных значений псевдобыстрот ($|\eta| > 2.0$). Струя, порожденная этим кварком, может быть использована для выделения сигнального процесса tH [16].

В основном фоновом процессе $pp \to tt$ такая струя отсутствует, так как все струи в этой реакции возникают из распадов топ-кварков ($t \to qq', t \to bl\nu$), однако есть большая вероятность того, что классическим алгоритмом поиска «передней» струи ($p_T^{FW} > 30$ ГэВ, $|\eta| > 1.74$) будет выделена струя не от «кварка-наблюдателя», а от топ-кварка из фонового процесса tt, то есть будет отобрано не сигнальное событие. В работе [17] был предложен альтернативный метод поиска «передней» струи: из не b-струй (из легких струй) выбирается та, которая дает наибольшую инвариантную массу с bструей из лептонного распада топ-кварка. Распределения по поперечному импульсу и псевдобыстроте «передней» струи, отобранной двумя алгоритмами, для сигнального процесса представлены на рис.14. Обоснованность использования альтернативного метода наглядно продемонстрирована на распределении по псевдобыстроте для сигнального и фоновых процессов (рис.15). Выбор альтернативного метода позволяет улучшить разделительную способность.

Рисунок 14 — Распределения по а)поперечному импульсу и б)псевдобыстроте «передней» струи для двух алгоритмов поиска для процесса $pp \to tHbq$

Рисунок 15 — Распределение по псевдобыстроте «передней» струи, отобранной альтернативным алгоритмом, для сигнального и всех фоновых процессов

ЗАКЛЮЧЕНИЕ

В ходе данной работы были получены навыки работы с Монте-Карло генераторами Madraph5 и Pythia. Было проведено моделирование и первичная реконструкция событий ассоциативного рождения бозона Хиггса с одиночным топ-кварком и соответствующих фоновых процессов в рамках первого порядка теории возмущения.

Дальнейший план работы:

- вычислить чувствительные к отбору сигнального процесса переменные (табл.2) [18] и создать базу данных для тестирования нейронной сети;
- довести статистику до уровня, пригодного для тренировки нейронной сети;
- создать базу данных для рассматриваемых в работе процессов в более высоком порядке теории возмущения.

Таблица 2 — Набор переменных, наиболее чувствительных к отбору событий сигнального процесса $pp \rightarrow tH$. Термин объекты означает совокупность всех струй заряженного лептона и нейтрино

Название	Определение		
M_{3J}	Инвариантная масса трех струй с наибольшим p_T		
N _b	Количество струй, порожденных b-кварками		
Sphresity _{all jets}	Мера равномерности распределения струй в пространстве		
$Sphresity_{lnu}$	Мера равномерности распределения объектов в пространстве		
$A planarity_{all \ jets}$	Мера отклонения струй от одной общей плоскости		
$\Delta(\eta_{t,FWD})$	Разность псевдобыстрот топ-кварка и передней струи		
$A planarity_{lnu}$	Мера отклонения объектов от одной общей плоскости		
$\Delta(\eta_{t,H})$	Развность псевдобыстрот топ-кварка и бозона Хиггса		
$M_{t,H}$	Восстановленная масса топ-кварка и бозона Хигтса		
M_H	Восстановленная масса бозона Хиггса		
fwmlnujet1	Первый момент Фокса-Вольфрама, составленный из импульсов объектов		
P_t^{FWD}	Поперечный импульс передней стру		
M _{H,FWD}	Инвариантная масса бозона Хиггса и передней струи		
$M_{H,cen.jet}$	Инвариантная масса бозона Хиггса и центральной легкой струи		
η^{FWD}	Псевдобыстрота передней струи		
χ^{min}	Качество (критерий χ^2) определения масс бозона Хиггса и топ-кварка		
M_t	Восстановленная масса топ-кварка		
Q_{lep}	Заряд лептона с наибольшим p_T		
$\Delta(R_{qqW})$	Угол между струями от адронного распада W-бозона		
N _{nonb}	Количество струй, порожденных кварками, отличных от b-кварка		
fwm2	Второй момент Фокса-Вольфрама, составленный из импульсов струй		
RapGap_maxptb	Разность псевдобыстрот передней стру и b-струи с наибольшим p_T		
RapGap_closetb	Разность псевдобыстрот передней струи и ближайшей к ней b-струи		
$P_{nonb_max}^t$	Наибольший поперечный импульс среди легких струй		
W_T_m	Поперечная масса всех струй		
M_{FWD}	Инвариатная масса передней струи и топ-кварка		
η_{lep}	Псевдобыстрота лептона с наибольшим p_T		
E_{b2}	Энергия третьей по поперечному импульсу b-струи		
$\Delta(\phi_{t,H})$	Разность азимутальных углов топ-кварка и бозона Хиггса		
HT_alljets	Алгебраическая сумма поперечных импульсов всех струй		
$\Delta(\eta_{H,FWD})$	Разнвость псевдобыстрот бозона Хиггса и передней струи		
P_H^t	Восстановленный поперечный импульс бозона Хиггса		
P_{b0}^t	Поперечный импульс b-струи с наибольшим p_T		
P_{b1}^t	Поперечный импульс второй по p_T b-струи		
η_H	Восстановленная псевдобыстрота бозона Хиггса		
η_{b1}	Псевдобыстрота второй по p_T b-струи		
M_{b0}	Инвариантная масса передней струи и b-струи с наибольшим p_T		

СПИСОК ЛИТЕРАТУРЫ

- ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B 716 (2012) 1.
- [2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B 716 (2012) 30.
- [3] ATLAS Collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Physics Letters B 784 (2018) 173.
- [4] CMS Collaboration, Observation of ttH production, Physical Review Letters 120 (2018).
- [5] S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, Journal of High Energy Physics 2013 (2013).
- [6] Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, CERN Yellow Reports: Monographs 2 (2017).
- [7] CMS Collaboration, Inclusive b-hadron production cross section with muons in pp collisions at $\sqrt{s} = 7$ TeV, Journal of High Energy Physics **2011** (2011).
- [8] ATLAS Collaboration, Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, The European Physical Journal C **71** (2011).
- [9] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, Journal of High Energy Physics 2014 (2014).
- [10] M. Guzzi, P. Nadolsky, E. Berger, H.-L. Lai, F. Olness and C.P. Yuan, CT10 parton distributions and other developments in the global QCD analysis, 1101.0561.

- [11] C. Bierlich, S. Chakraborty, N. Desai, L. Gellersen, I. Helenius, P. Ilten et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, 2203.11601.
- [12] M. Cacciari, G.P. Salam and G. Soyez, Fastjet user manual, The European Physical Journal C 72 (2012).
- [13] M. Cacciari, G.P. Salam and G. Soyez, The anti-k_t jet clustering algorithm, Journal of High Energy Physics 2008 (2008).
- [14] ATLAS Collaboration, Performance of b-Jet Identification in the ATLAS Experiment, Journal of Instrumentation 11 (2016).
- [15] CMS Collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, Journal of Instrumentation 13 (2018)
- [16] И.Р. Бойко, Н.А. Гусейнов, О.А. Коваль, Исследование рождения бозона Хиггса совместно с одиночным топ-кварком методом Монте-Карло, Ядерная физика 85 (2022) 120.
- [17] А.Д. Тропина, Исследование ассоциативного рождения бозона Хиггса совместно с топ-кварком в эксперименте ATLAS, Московский физико-технический институт, 2022.
- [18] И.Р. Бойко, Н.А. Гусейнов, И.В. Елецких, А.Р. Диденко, О.А. Доловова, А.Д. Тропина, Применение искусственных нейронных сетей для поиска рождения бозона Хиггса совместно с одиночным топ-кварком, Физика элементарных частиц и атомного ядра 21 (2024) 592.