Фон космогенного происхождения в эксперименте DEAP-3600

Студент: Панфилов Павел Андреевич Б22-102 Научный руководитель: старший преподаватель Мачулин И.Н. Научный ассистент: к.ф.-м.н. Долганов Г.Д.

Цель работы

- Разобраться с устройством детектора DEAP-3600.
- Ознакомление с программным пакетом моделирования взаимодействия излучения с веществом методом Монте-Карло FLUKA.
- Построить спектры распада изотопов, образовавшихся в детекторе DEAP-3600 за счёт взаимодействия жидкого аргона и космических мюонов.
- Оценка уровня фона от изотопов космогенного происхождения.

Скрытая масса.

- Одно из наблюдений, свидетельствующих в пользу скрытой массы - кривые вращения галактик.
- Считается, что скрытая масса может взаимодействовать только посредством гравитационного и слабого взаимодействий.

Рис 1. Кривая скорости вращения галактики.

Эксперимент DEAP-3600.

 Эксперимент DEAP-3600
 (Dark matter Experiment using Argon Pulse-shape
 discrimination) направлен на поиск слабо
 взаимодействующих
 массивных частиц (WIMPs).
 Может использоваться для регистрации солнечных нейтрино.

Рис 3. Детектор внутри бочки[1].

> Реакция нейтрино и 40 Ar: v_e + 40 Ar = e⁻ + 40 K

[1] Ellingwood E. Searching for neutrino absorption in 40Ar using the DEAP-3600 dark matter detector. — 2024 CAP Congress, Western University. URL: <u>https://indico.cern.ch/event/1316311/contributions/5861261/attachments/2864675/5013644/CAP2024_ellingwood.pdf</u>.

Взаимодействие мюонов и аргона в детекторе.

- При взаимодействии мюонов с аргоном могут образовываться космогенные изотопы, распад которых также вносит вклад в уровень фона.
- Одной из особенностей данного фона является распад космогенных изотопов с большими энергиями.
- Некоторые схемы распада:

$${}^{16}{}_{7}N \rightarrow {}^{16}{}_{8}O + e^{-} + \overline{v}_{e}$$

$${}^{9}{}_{6}C \rightarrow {}^{9}{}_{5}B + e^{+} + v_{e}$$

$${}^{9}{}_{6}C + e^{-} \rightarrow {}^{9}{}_{5}B + v_{e}$$

Рис 4. Качественная схема взаимодействия протона космических лучей с ядрами в земной атмосфере.

Распределение мюонов по энергиям.

Средний поток мюонов на глубине 2 км под землей[2]: I_µ = (3.3 * 10⁻¹⁰) µ/(s*cm²)

Средняя энергия мюонов: <E> = 350GeV

[2] Amaudruz, P.-A., et al. (2017). Design and construction of the DEAP- 3600 dark matter detector. Astroparticle Physics, 85, 1–23.

Таблица изотопов с энергией распада более 9 MeV, образующихся в аргоне на протяжении эквивалента 97 лет наблюдений в модели на Fluka.

Element	Number of isotopes	Decay	Half-life
15C	1	beta-	2,449 s
9C	2	electron capture beta+	126,5 ms
13B	2	beta-	17,36 ms
12B	13	beta-	20,20 ms
8B	6	electron capture beta+	770 ms
11Be	1	beta-	13,76 s
8Li	14	beta-	839,9 ms

Дифференциальный спектр энерговыделения изотопов (за 1 год).

Интегральный суммарный спектр энерговыделения изотопов (за 1 год).

Обработка результатов

• Всего изотопов, с энергией выше 9 MeV, образованных в детекторе за счет космических мюонов:

N₁ = 0.4 изотопа в год

- Распадов с энерговыделением выше 9 MeV:
 - N₂ = 0.01 распад в год

План на будущее.

- Модель на Fluka имела упрощенную геометрию детектора, поэтому уточнение модели является шагом в сторону улучшения точности результатов.
- На основе уточненной модели будет рассчитан фон космогенного происхождения от образующихся изотопов во всем энергетическом диапазоне детектора DEAP-3600.
- Учет временного окна мюонного вето.

Спасибо за внимание.

Приложения:

Рис 5. Модель детектора.

Рис 6. Энергетический спектр от собственной радиоактивности материалов, космогенных мюонов и солнечных нейтрино в DEAP-3600[1].

[1] Ellingwood E. Searching for neutrino absorption in 40Ar using the DEAP-3600 dark matter detector. — 2024 CAP Congress, Western University. URL: <u>https://indico.cern.ch/event/1316311/contributions/5861261/attachments/2864675/5013644/CAP2024_ellingwood.pdf</u>.