Взаимодействие тёмных атомов с веществом и его физические, астрофизические и космологические проявления

Национальный исследовательский ядерный университет «МИФИ»

Аспирант: Бикбаев Тимур Эдуардович

Научный руководитель, д.ф.-м.н., проф.:

МИСРИ МИСРИ

Хлопов Максим Юрьевич

Москва, 2025 г.

План

- 1. Свидетельства существования скрытой массы.
- 2. Классификация скрытой массы.
- 3. Составная скрытая масса, тёмные атомы Х-гелия.
- 4. Эксперименты по прямому поиску частиц скрытой массы.
- 5. Моделирование взаимодействия тёмных атомов с ядрами вещества.

1. Свидетельства существования скрытой массы. 1.1 Динамика скоплений галактик [1,2]:

$$\begin{split} 2 < T > + < U > = 0. & \text{for the total potential energy } \Omega: \\ \overline{r^2} = \frac{3}{4\pi R^3} \int_0^R r^2 \times 4\pi r^2 dr = \frac{3R^2}{5} & \Omega = -\frac{3}{5} \Gamma \frac{M^2}{R} \\ (T > = \frac{N < mv^2 >}{2}, \\ < U > = \frac{GN(N-1) < m^2 >}{2 < r >}. & \overline{r} = \overline{r^2} & \Gamma = \text{Gravitational constant} \\ \overline{\varepsilon}_p = \Omega/M \sim -64 \times 10^{12} \text{ cm}^2 \text{s}^{-2} \\ \overline{\varepsilon}_k = \overline{v^2}/2 \sim -\overline{\varepsilon}_p/2 = 32 \times 10^{12} \text{ cm}^2 \text{s}^{-2} \\ (\overline{v^2})^{1/2} = 80 \text{ km/s}. \end{split}$$

1. Свидетельства существования скрытой массы. 1.2 Кривые вращения галактик.

Кривая вращения NGC 6503 [3]. Пунктирная, штриховая и штрих-пунктирная линии — вклад газа, диска и скрытой массы соответственно.

1. Свидетельства существования скрытой массы. 1.2 Кривые вращения галактик.

$$\frac{\mathrm{Gm}\mathrm{M}_{\mathrm{r}}}{\mathrm{r}^2} = \frac{\mathrm{mv}^2}{\mathrm{r}}, \quad \mathrm{M}_{\mathrm{r}} = \overline{\rho} \frac{4}{3} \pi \mathrm{r}^3, \quad \mathrm{v}(\mathrm{r}) = \sqrt{\frac{4}{3} \pi \mathrm{G} \overline{\rho} \mathrm{r}^2} \sim \mathrm{r}$$

Во внешней области галактики масса М практически постоянна, и предполагается, что движение звёзд должно описываться следующим законом:

$$v(r) = \sqrt{\frac{GM}{r}},$$

где M — вся масса вещества внутри сферы радиуса r.

 $M(r) \propto r.$

Формы кривых вращения показывают, что плотность скрытой массы в галактике распределяется следующим образом:

$$ho(r) \propto rac{M(r)}{r^3} \sim rac{1}{r^2}.$$

1. Свидетельства существования скрытой массы. 1.3 Формирование галактик [5,6].

Изменение со временем (слева направо) распределения холодной темной материи в модельной Вселенной под действием одной только гравитации численный эксперимент методом N тел. Начальное условие — почти однородное распределение плотности темной материи во Вселенной. Координаты сопутствующие, т. е. расширение происходит, но здесь оно не отражено.

1. Свидетельства существования скрытой массы. 1.3 Формирование галактик.

Результаты исследования 2dFGRS (2dF Galaxy Redshift Survey, обзор красного смещения галактики 2dF) с помощью Англоавстралийского телескопа, 1997—2001 годы [7]. Реконструкция с помощью математического инструмента для восстановления объемно-покрывающего и непрерывного поля плотности или интенсивности из дискретного набора точек. Отчётливо видны Великая стена Слоуна и другие сверхскопления. Рендеринг данных 2dFGRS.

1. Свидетельства существования скрытой массы. 1.4 Анизотропия реликтового излучения.

Температурный угловой спектр мощности первичного реликтового излучения от Planck, показывающий точное измерение семи акустических пиков, которые хорошо согласуются с шестипараметрической ЛСDМ-моделью [8]. Горизонтальная ось является логарифмической до I = 50 и линейной далее. Вертикальная шкала - I(I + 1)C_I/2π. *Красные точки* — измерения космической обсерватории «Планк», синяя кривая — результат теории с заложенным спектром первичных неоднородностей.

Флуктуации температуры реликтового излучения: сравнение между СОВЕ и WMAP [9]. Изображение с сайта http://map.gsfc.nasa.gov/.

1. Свидетельства существования скрытой массы. 1.4 Анизотропия реликтового излучения.

Влияние космологических параметров на угловой спектр мощности температурной анизотропии реликтового излучения [10].

1. Свидетельства существования скрытой массы. 1.5 Гравитационное линзирование.

Изображения объединяющегося Скопления галактик Пуля, 1E0657-558 (два сталкивающихся скопления). На левой панели показано прямое изображение скопления, полученное с помощью 6,5-метрового телескопа Magellan в обсерватории Лас Кампанас, на правой панели - рентгеновское изображение скопления со спутника Chandra [11].

2. Классификация скрытой массы.

- 1) Классификация по барионному заряду.
- 1.а) Барионная скрытая масса.
- 1.b) Небарионная скрытая масса.
- 2) Классификация по стабильности.
- 2.а) Стабильная.
- 2.b) Распадающаяся.

- 3) Классификация по наличию симметрии.
- 3.а) Симметричная.
- 3.b) Асимметричная.
- 4) Классификация по количеству компонентов.
- 4.а) Однокомпонентная.
- 4.b) Многокомпонентная.

2. Классификация скрытой массы.

- 5) Классификация по количеству частиц.
- 5.а) Одночастичная.
- 5.b) Составная.
- 6) Классификация по «температуре».

 $(T_f > M_x) M_x \approx 10 - 100 \text{ BB}$ 6.b) Горячая скрытая масса.

 $M_x \approx 1$ кэВ $(T_f \approx M_x)$ 6.b) Тёплая скрытая масса.

 $M_x \ge 30$ кэВ $(T_f << M_x)$ 6.с) Холодная скрытая масса.

Логарифмический график эволюции выходов реликтов для обычной закалки (freeze-out) (сплошной цвет) и «замораживания» (freeze-in) с помощью взаимодействия Юкавы (штриховая линия) в зависимости от x =m/T. Сплошная черная линия указывает на выход при сохранении равновесия, а стрелки указывают на эффект увеличения силы связи для двух процессов. Обратите внимание, что при механизме «freeze-in» доминирует эпоха х ~ 2 -5, в отличие от механизма «freeze-out», который отклоняется от равновесия только при x ~ 20 – 30 [16].

• 3.1) Модель Глэшоу.

3. Составная скрытая масса.

Модель Глэшоу является расширением Стандартной Модели посредством введения дополнительной группы симметрии SU(2) [18,19].

$$rac{m_E}{m_e} = rac{m_U}{m_u} = rac{m_D}{m_d} = S_6 = rac{S}{10^6}.$$

Самые «лёгкие» из партнеров теоретически являются стабильными.

$\left(\nu_{e}^{\prime} \right)$		$\left(U \right)$	
$\left(\begin{array}{c} E \end{array} \right)$,	$\left(D \right)$	•

 $\nu_e^{\prime}
ightarrow$ тяжёлая нестабильная частица.

 $E \rightarrow m \sim 500$ GeV, стабильная частица.

 $U \to m \sim 3$ TeV, тяжелая метастабильная частица.

 $D \to m \sim 5 \text{ TeV}, D \Rightarrow U + E + \bar{\nu_e}'.$

Реализация данной модели сталкивается с рядом проблем: из существования постулируемого избытка частиц не следует подавление анти-тера-частиц; вместе с тера-гелием должны рождаться и другие состояния – $(^{4}HeE^{-})^{+}$, E^{+} , (UUUE), (UUuE), (UduE). Чтобы решить эти проблемы вводится (Ep) – катализ, результатом которого является уничтожением продуктов неполной аннигиляции и связывания:

$$[(UUU)E] + (Ep) \rightarrow [(UUU)EE] + p,$$
$$E^+ + (Ep) \rightarrow (E^+E) + p.$$

3. Составная скрытая масса.

• 3.2) Современные модели составной скрытой массы.

Если ввести новую частицу с зарядом -2 (в общем случае -2n, где п – натуральное число) в избытке по отношению к её античастице, то проблемы модели Глэшоу не возникают. O^{--} при температуре 100 кэВ образует с первичным гелием связанное состояние OHe [20]:

$$O^{--} + He^4 \rightarrow (OHe) + \gamma.$$

$$I_0 = rac{Z_X^2 Z_lpha^2 lpha^2 m_{He}}{2} pprox 1.6 \; {
m M}$$
эВ

$$R_b = rac{\hbar c}{Z_X Z_lpha m_{He} lpha} pprox 2 \cdot 10^{-13} \; \mathrm{cm}$$

В моделях с четырьмя или пятью поколениями фермионов [21] возможно формирование избытка античастиц. В этом случае возможно существование стабильного состояния с зарядом -2 аналогичного тера-гелию [22]:

$$\Delta_{\bar{U}\bar{U}\bar{U}}^{--} = (U\bar{U}\bar{U}).$$

С участием $\Delta_{\bar{U}\bar{U}\bar{U}}^{--}$ может образоваться нейтральный OHe:

 $(UUU) + He^4 \rightarrow [(UUU)He] + \gamma.$

Структура связанного состояния X-гелия зависит от значения параметра: $a = Z_{\alpha} Z_X \alpha A m_p R_{nHe}$

3. Составная скрытая масса.

• 3.3) Заряженные компоненты составной скрытой массы.

1) Четвёртое поколение фермионов.

$$\left(\begin{array}{c}N\\E\end{array}\right), \left(\begin{array}{c}U\\D\end{array}\right).$$

 $N \to m \sim 50~{\rm GeV}$ квазистабильная частица.

 $E \rightarrow 100 \text{ GeV} < m < \sim 1 \text{ TeV}, E \rightarrow N l \nu$, нестабильная частица.

 $U \to 220~{\rm GeV} < m < \sim 1~{\rm TeV}, U \to N +$ (лёгкие фермионы), долгоживущая частица.

 $D \rightarrow 220 \text{ GeV} < m < \sim 1 \text{ TeV}, D \rightarrow U l \nu$, нестабильная частица.

2) АС лептоны.

АС модель – это расширение СМ в рамках подхода, предложенного Аланом Коном и основанного на принципах почти коммутативной геометрии [23].

3. Составная скрытая масса.

• 3.3) Заряженные компоненты составной скрытой массы.

3)Новые частицы в модели техницвета.

а. Технифермионы и конденсат

- Вводятся новые фермионы ("технифермионы") ψ , заряженные под новой калибровочной группой $SU(N)_{
 m TC}$
- При низких энергиях техникварки образуют конденсат $\langle \bar{\psi}\psi
 angle
 eq 0$, который нарушает электрослабую симметрию $SU(2)_L imes U(1)_Y o U(1)_{
 m em}$.

b. Связь с массами W и ${\cal Z}$

Массы калибровочных бозонов возникают через взаимодействие с конденсатом:

$$M_W^2 = rac{g^2}{4}F^2, \quad M_Z^2 = rac{g^2+g'^2}{4}F^2,$$

где:

• g,g' — константы электрослабых взаимодействий,

• F — константа распада технипионов (аналог f_π в КХД), связанная с конденсатом:

$$F\sim \sqrt{rac{\langlear\psi\psi
angle}{N_{
m TC}}}.$$

c. Walking Technicolor (WTC)

В отличие от обычной Technicolor, где взаимодействия быстро становятся слабыми (асимптотическая свобода), в WTC группа $SU(N)_{
m TC}$ обладает **"медленным бегом"** (walking) константы связи $lpha_{
m TC}$. Это обеспечивает:

- Усиление конденсата $\langle ar{\psi} \psi
 angle$,
- Избегание проблем с феноменологией (например, слишком большие массы фермионов СМ).

• 3.3) Заряженные компоненты составной скрытой массы.

Частицы	Тип	Заряд
U,D	Техникварки	
v,ζ	Технилептоны	$\frac{1-3y}{2}, \frac{-1-3y}{2}$
UU,UD,DD	Технибарионы	y + 1, y, y - 1

Семейство техничастиц

y – действительное число, при y = 1 получаются новые кандидаты на роль стабильных дважды отрицательно заряженных частиц: $\overline{U}\overline{U}$ – антитехнибарионы,

 ζ – технилептоны.

В зависимости от существования законов сохранения существует три варианта скрытой массы из техничастиц:

1) Сохраняется технибарионное число. Основной вклад вносят технибарионы.

2) Сохраняется технилептонное число. Основной вклад вносят технилеп-

тоны.

3) Сохраняется и то, и другое. Вклад вносят и технибарионы, и технилеп-

тоны.

Бозон Хигтса рассматривается как связанное состояние $\frac{1}{\sqrt{2}}(U\bar{U}+D\bar{D})$. Самые лёгкие техничастицы являются стабильными, а тёмные атомы, составляющие скрытую массу, являются связанными состояниями, а именно: (-2n)-заряженный (анти)технибарион UU^{-2n} и (анти) технилептоны $(v/\zeta)^{-2n}$ могут представляют собой ядра темных атомов Х-гелия $X^{-2n}(He^{+2})_n$, которые должны иметь массы $\gtrsim 1$ ТэВ.

3)Новые частицы в модели техницвета [24,25].

4. Эксперименты по прямому поиску частиц скрытой массы.

Детектор	Ядра	Α	Z	Температура	Обнаружение
DAMA (/Nal + /LIBRA)	Na, I, Tl	23, 127, 205	11, 53, 81	300 K	13.7 σ
CoGeNT	Ge	70-74	32	70 K	2.8 σ
CDMS	Ge (Si)	70-74 (28-30)	32 (14)	Криогенный	-
XENON100	Xe	124-134	54	Криогенный	$-\sigma v = \frac{f\pi\alpha}{dr}$
LUX	Xe	124-134	54	173 K	$m_p^2 \sqrt{m_p^2}$
CRESST-III	Ca, W, O (CaWO₄)	40, 182-186, 16	20, 74, 8	Криогенный	_
SuperCDMS	Ge, Si	70-74, 28-30	32, 14	Криогенный	_
COSINE-100	Na, I	23, 127	11, 53	300 K	-
ANAIS-112	Na, I	23, 127	11, 53	300 K	-
LUX-ZEPLIN (LZ)	Xe	124-134	54	Криогенный	_
XENONnT	Xe	124-134	54	Криогенный	_
PandaX-4T	Xe	124-134	54	Криогенный	-

5. Моделирование взаимодействия тёмных атомов с ядрами вещества. <u>Результаты экспериментов DAMA/Nal и DAMA/LIBRA можно объяснить годичными модуляциями</u> <u>энерговыделения при формировании низкоэнергетического связанного состояния *XHe* с ядрами. Возможность существования низкоэнергетического связанного состояния *XHe* с ядрами и доминантность упругих процессов в сценарии тёмного атома основывается на гипотезе о наличии потенциального барьера в процессах взаимодействия *X*-гелия с ядрами вещества, требующей корректного квантовомеханического обоснования.</u>

Задача: <u>разработка квантово-механической численной модели взаимодействия Х-геля с ядром</u> <u>вещества.</u>

Цель работы: восстановление формы эффективного потенциала взаимодействия ХНе с ядром вещества.

19

5. Моделирование взаимодействия тёмных атомов с ядрами вещества.

Графики зависимости суммарного эффективного потенциала взаимодействия тёмного атома ОНе с ядром натрия (синяя сплошная линия) и квадрата модуля волновой функции натрия (красная сплошная линия), соответствующей уровню энергии основного состояния натрия в данном суммарном эффективном потенциале взаимодействия системы OHe-Na, равному 4.1 keV, от радиус вектора ядра натрия. **20**

Список литературы.

- [1] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta. 1933. Bd. 6. S. 110—127.
- [2] Zwicky, F. (October 1937). "On the Masses of Nebulae and of Clusters of Nebulae". The Astrophysical Journal. 86: 217. Bibcode:1937ApJ....86..217Z. doi:10.1086/143864. ISSN 0004-637X.
- [3] K. G. Begeman, A. H. Broeils and R. H. Sanders, 1991, MNRAS, 249, 523.
- [4] M. Lisanti: Lectures on Dark Matter Physics, arXiv:1603.03797.
- [5] О. К. Сильченко, Происхождение и эволюция галактик / под редакцией В. Г. Сурдина. Фрязино: Век 2, 2017. 224 с. — ISBN 978-5-85099-196-8.
- [6] Д. С. Горбунов, В. А. Рубаков, Введение в теорию ранней Вселенной: Космологические возмущения. Инфляционная теория. — М.: Краснад, 2010. — 568 с. — ISBN 978-5-396-00046-9.
- [7] Monthly Notices of the Royal Astronomical Society, Volume 328, Issue 4, December 2001, Pages 1039–1063, <u>https://doi.org/10.1046/j.1365-8711.2001.04902.x</u>.
- [8] P. Ade, A. R. et al., Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys. 571, A1. (2014b).
- [9] WMAP Collaboration (D.N. Spergel et al.). Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Mar 2006. 89 pp. Astro-phys.J.Suppl. 170 (2007) 377.
- [10] W. Hu, T. Okamoto: Mass reconstruction with cmb polarization, Astrophys. J. 574, 566–574, (2002).
- [11] Clowe, D., Brada^{*}c, M., Gonzalez, A. H., et al. 2006a, A Direct Empirical Proof of the Existence of Dark Matter, ApJ, 648, L109.
- [12] J. Einasto Dark matter // Astronomy and Astrophysics:/ Ed.by Oddbjørn Engvold, Rolf Stabell, Bozena Czerny and John Lattanzio. —Singapore: EOLSS Publishers, 2012. — T. 2. — C. 152—198. — 488 c. —(Encyclopedia of Life Support Systems). — ISBN 978-1-84826-823-4.
- [13] W. Bonivento, D. Gorbunov, M. Shaposhnikov and A. Tokareva Polarization of photons emitted by decaying dark matter, arXiv:1610.04532.
- [14] A. Chudaykin, D. Gorbunov, I. Tkachev Dark matter component decaying after recombination: Lensing constraints with Planck data INR-TH/2016-006.
- [15] KALLIOPI PETRAKI and RAYMOND R. VOLKAS, REVIEW OF ASYMMETRIC DARK MATTER, International Journal of Modern Physics A 2013 28:19.

Список литературы.

- [16] Lawrence J. Hall, Karsten Jedamzik, John March-Russell, Stephen M. West, Freeze-In Production of FIMP Dark Matter, JHEP 1003:080, (2010), arXiv:0911.1120
- [17] Khlopov, M. (2012) Fundamentals of Cosmic Particle Physics. Cambridge International Science Publishing, Cambridge. <u>https://doi.org/10.1007/978-1-907343-72-8</u>.
- [18] S. L. Glashow, A Sinister Extension of the Standard Model to SU(3)XSU(2)XSU(2)XU(1), arXiv:hep-ph/0504287 (2005).
- [19] D. Fargion, M. Yu. Khlopov: Tera-leptons' shadows over Sinister Universe, Gravitation Cosmol. \textbf{19}, 219 (2013).
- [20] M. Yu. Khlopov, C. Kouvaris: Composite dark matter from a model with composite Higgsboson, Phys. Rev. \textbf{78}, 065040 (2008).
- [21] K. M. Belotsky, M. Y. Khlopov, K. I. Shibaev: Composite Dark Matter and its Charged Constituents, Grav.Cosmol., V.12 PP.93-99, (2006), arXiv:astro-ph/0604518.
- [22] M. Y. Khlopov: Composite dark matter from 4th generation, JETP Letters 83, 1–4 (2006).
- [23] A. Connes, Noncommutative Geometry (Academic Press, London and San Diego, 1994).
- [24] Gudnason, S.B.; Kouvaris, C.; Sannino, F. Dark matter from new technicolor theories. {\it Phys. Rev. D} {\bf 2006}, {\it 74}, 095008.
- [25] M. Y. Khlopov, C. Kouvaris: Strong interactive massive particles from a strongcoupled theory, Physical Review D 77, PP. 065002 (2008)
- [26] M. Yu. Khlopov, A. G. Mayorov, E. Yu. Soldatov: The dark atoms of darkmatter, Prespace. J. 1, 1403–1417 (2010)