Разработка сцинтилляционного спектрометра для детектирования реакторных антинейтрино

Студент — Р. Р. Биктимиров ^{1, 2} Научный руководитель — Д. В. Попов ^{1, 2}

¹Национальный исследовательский центр «Курчатовский институт»

 2 Национальный исследовательский ядерный университет «МИФИ»

Введение

Мотивация:

- Проведение независимого мониторинга состояния и состава топлива ядерного реактора, а также оценка мощности и дистанционный контроль его энерговыработки.
- Поиск «новой физики» и развитие нейтринной физики ядерных реакторов.

Цель:

Сборка блока модульного детектора реакторных антинейтрино на основе органических пластиковых сцинтилляторов и определение его спектрометрических характеристик. Задачи:

- Определение спектрометрических характеристик и сравнение по ним между собой пластиковых сцинтилляторов;
- Определение спектрометрических характеристик и сравнение по ним между собой вакуумных ФЭУ;
- Одбор оптимальной конфигурации блока модульного детектора реакторных антинейтрино.

Сцинтилляционный спектрометр

Спектрометр: пластиковый (полистирол с добавками ПОПОП и п-терфенил) сцинтиллятор размерами (70 × 5 × 5) см, сигнал с которого снимается вакуумными ФЭУ с диаметром фотокатода 46,5 мм. Блок представляет собой сборку из нескольких спектрометров.

Схема установки

Функциональный вид установки (не в масштабе): 1 — вакуумный ФЭУ, 2 — кювета, 3 — оптический диффузор, 4 — LED-драйвер (далее — источник). Генератор высокого напряжения, делитель, кабель питания, сигнальный провод и АЦП на рисунке не обозначены.

Зарядовые спектры с ФЭУ при различных яркостях светодиода

¢

Насыщение $\Phi \exists \forall (U=1250B = const)$

Зависимость дисперсии кривой отклика ФЭУ от среднего. Красная линия — ожидаемая зависимость: $D = k \cdot \mu$

Зависимость отклика ФЭУ от подаваемого напряжения

Зависимость среднего значения кривой отклика ФЭУ от подаваемого на него напряжения, аппроксимированная законом [1], где n = 10 — кол-во динодов, a — свободный параметр.

Разработка спектрометра

Зависимость отклика ФЭУ от подаваемого напряжения

Зависимость относительного разрешения кривой отклика ФЭУ от подаваемого напряжения 🚫

Сравнение ФЭУ по относительному разрешению

e paspeue

Относите

13.5

В данной работе было произведено измерение основных спектрометрических характеристик различных ФЭУ:

- найден предел на амплитуды их сигналов (до 600 мВ);
- определен рабочий диапазон подаваемого напряжения питания (от 950 до 1150 В);
- в рабочей области (по амплитуде и напряжению) ФЭУ полностью соотносится с эмпирическим законом [1].

По полученным в ходе эксперимента данным было произведено сравнение ФЭУ между собой по величине их относительного разрешения. Существенных отличий по этому параметру обнаружено не было, поэтому для дальнейшей работы будут использованы все образцы.

Спасибо за внимание, до новых встреч!

•

Зависимость отклика ФЭУ от напряжения

Напряжение, Вольт

Зарядовые спектры источников

Зарядовые спектры источников излучения

Разработка спектрометра

$$S(Q) = \int_{0}^{E_{max}} S_{th}(E) \cdot N \cdot \frac{1}{\sqrt{2\pi} \cdot \sigma_{E}(E)} \cdot e^{-\frac{(E - kQ - b)^{2}}{2\sigma_{E}^{2}(E)}} dE,$$

где $S_{th}(E)$ — спектр по энерговыделению, получаемый методом Монте-Карло; E — энергия; $\sigma_E(E)$ — энергетическое разрешение: $\sigma_E(E) = E \cdot \sqrt{\alpha^2 + \frac{\beta^2}{E} + \frac{\gamma^2}{E^2}}$, где α — параметр, характеризующий неоднородность светособирания детектора; β — статистический параметр, зависящий от числа фотоэлектронов; γ — параметр шумов электроники; k — коэффициент пропорциональности между наблюдаемой энергией E_{vis} и условным зарядом Q в линейном приближении: $E_{vis} = k \cdot Q + b$, где коэффициент b отвечает за смещение нуля по оси энергии; N — нормировка.

Энергетическая шкала сцинтилляционного детектора в области E = 0,340 - 1,062 МэВ

Относительное энергетическое разрешение (в единицах ПШПВ)

Fig. 4. Energy dependent resolution $\Delta L/L$ for the fabricated plastic scintillator.

а)Ү.Кіт и др.[1]

1. Energy Resolution of the Fabricated Plastic Scintillator / Y. Kim [и др.]. — 2018. 2. Dietze G., Klein H. GAMMA-CALIBRATION OF NE 213 SCINTILLATION COUNTERS // Nuclear Instruments and Methods. — 1982.

