Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования НИЯУ «МИФИ»

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ В ДЕТЕКТОРЕ РЭД-100

Коськин Ю.И. группа Б21-102 Научный руководитель Кумпан А. В.

Детектор РЭД-100

- Двухфазный эмиссионный детектор
- Сцинтилляция + электроны ионизации → вторичная сцинтилляция в газовой фазе (электролюминесценция)
- Рабочий объем сверху и снизу просматривается двумя матрицами по 19 ФЭУ в каждой
- 3D реконструкция событий

Детектор чувствителен к одиночным электронам ионизации.

2022: эксперимент на КАЭС с Хе

2022-25: подготовка к

эксперименту на КАЭС с Ar

Моделирование событий. GEANT4

- Для моделирования фоновых процессов в эксперименте на КАЭС использовался программный пакет GEANT4
- Детальная модель геометрии детектора
 в GEANT4
- Описанные в «физическом листе»
 взаимодействия и их параметры
 позволяют с высокой точностью
 воссоздавать общий характер движения
 частиц и их взаимодействий с веществом
- Произведена замена рабочего вещества в модели с ксенона на аргон

Моделирование событий. Алгоритм кластеризации

Различимость отдельных энерговыделений не имеет значения — нужен алгоритм симуляции наблюдения энерговыделений в детекторе

Алгоритм кластеризации:

1. Генерация событий в программном пакете Geant4, отбор энерговыделений по координатам и деление по временным интервалам

2. Кластеризация энерговыделений по времени и координатам

3. Отслеживание параметров (времени, координаты, энергии, типа частицы) отдельных кластеров и события в целом

4. Получение списка кластеров для генерации в дальнейшем сцинтилляционных сигналов в детекторе

Моделирование фоновых событий для эксперимента на КАЭС

• Для анализа экспериментальных данных необходимо располагать информацией о характере фонов

• В бетоне, материалах кристотата и матрицах ФЭУ содержатся изотопы ²³⁸U, ⁴⁰К и ²³²Th

 Генерировать фон от изотопов напрямую – крайне длительная процедура

 Водный бак имеет простую форму и симметричен (внешний цилиндр), но даже в таком приближении это недели моделирования, потому рассматривалась поверхность меньшей площади (внутренний цилиндр)

• Смоделировано:

Внешний цилиндр — 2 минуты Внутренний цилиндр — 3 суток

Моделирование фоновых событий для эксперимента на КАЭС^{Угловое} распределения гамма-квантов от бетона

Моделирование фоновых событий для эксперимента на КАЭС

Моделирование фоновых событий для эксперимента на КАЭС

- Для моделирования отклика детектора нужно не просто энергетические спектры, а спектры в электронах ионизации
- С помощью программного пакета NEST производится перевод энерговыделений в электроны ионизации с последующим моделированием экстракции

EEE(Xe) = 32.8% lifetime(Xe) = 874 ± 20 мкс EEE(Ar) ~ 100% lifetime(Ar) ~ 430 мкс

Моделирование фоновых событий для эксперимента на КАЭС

Результаты экстракции для 11 электронов ионизации в 2102 событиях

Пример моделирования для 11 электронов ионизации в ксеноне
Процедура справедлива и для аргона с точностью до параметров экстракции и времени жизни

Моделирование нестандартных взаимодействий

real points

 В рамках выполнения НИРС в предыдущих семестрах были рассмотрены нестандартные взаимодействия (двойной безнейтринный бета-распад, магнитный момент нейтрино)

Заключение

В рамках выполнения НИРС:

- Изучена процедура полной цепочки моделирования событий в детекторе РЭД-100 (ка на ксеноне, так и на аргоне)
- В модели РЭД-100 в GEANT-4 произведена замена рабочего вещества на аргон
- Произведена модификация процедуры кластеризации соответствующая замене рабочего вещества
- Проведено моделирование выделения энергии от внешних фонов в детекторе РЭД-1
- Реализована процедура расчета потерь электронов ионизации при дрейфе и экстракции

Спасибо за внимание!

Энергетические спектры, внешний цилиндр («имитация»

Энергетические спектры, внутренний цилиндр («имитация»)

Энергетические спектры, внешний криостат

Энергетические спектры, внутренний криостат

Энергетические спектры, верхняя матрица ФЭУ

Энергетические спектры, нижняя матрица ФЭУ

Суммарный спектр

Число кластеров, внешний цилиндр («имитация»)

Число кластеров, внутренний цилиндр («имитация»)

Число кластеров, внутренний криостат

Число кластеров, внешний криостат

Число кластеров, верхняя матрица ФЭУ

Число кластеров, нижняя матрица ФЭУ

Суммарный энергетический спектр

Суммарное распределение по количеству кластеров в Сбытиле распределение по числу кластеров в сбытии 3 дня

Backup 01

Backup 02

