

Национальный исследовательский ядерный университет «МИФИ» Кафедра №40 «Физика элементарных частиц»

Отчет по преддипломной практике

Исследование возбужденных состояний ядра ¹¹В в реакции ¹⁰В(⁷Li, ⁶Li)¹¹В

Студент гр. M23-112

Райдун С.К.

Научный руководитель к.ф.-м.н.

Научный консультант д.ф.-м.н. Чернышев Б. А.

Демьянова А.С.

Актуальность работы

Состояние Хойла 7.65 МэВ Аналог состояния 0+ядра ¹²С Хойла: 8.56 МэВ 3/2⁻ядра ¹¹В a **O** α a a ^{12}C $^{11}\mathbf{B}$ $\alpha + \alpha + \alpha$ $\alpha + \alpha + t$ $E^* = 8.56 \text{ MeV}, 3/2^ E^* = 7.65 \text{ MeV}, 0^+$ $R_{RMS} = 2.89 \pm 0.04 \ \phi M$ $R_{RMS} = 2.87 \pm 0.12 \text{ }$ фм A.N. Danilov, A.S. A.S. Demyanova,

AIP Conf. Proc. 3020,

020002 (2024)

A.N. Dannov, A.S. Demyanova et al., Physics of Atomic Nuclei 78, 777 (2015) MeV

Целью работы является исследование состояний ядра ¹¹В.

Задачи работы:

- Разработка набора программ для обработки одномерных энергетических спектров.
- ✤ Получение угловых распределений для основного состояния и состояния 8.56 МэВ ядра ¹¹В.

✤Теоретический анализ полученных угловых распределений с помощью оптической модели и метода искаженных волн.

⁷Li + ¹⁰B

Обработка экспериментальных данных

энергии вылетевших частиц (в каналах), ось Ү - энергия остановки вылетевших частиц (в каналах). Каждая гипербола отвечает за определенный канал реакции.

⁶Li. Ось X – полные потери энергии вылетевших частиц (dE+E) в МэВ, ось Ү – число событий.

НИЯУ

Обработка экспериментальных данных

Раньше – ручная обработка одномерных энергетических спектров с помощью программы Origin Pro.

Решение – автоматизация обработки одномерных энергетических спектров.

Программа для обработки одномерных энергетических спектров

- Автоматический расчет положений исследуемых энергетических состояний на спектре.
- Автоматическое фитирование энергетических состояний с помощью
 Гауссовых функций.
- Автоматическое получение величины дифференциального сечения для заданного угла в лабораторной системе координат.

Программа для обработки одномерных энергетических спектров

нияу ИСОИ

Программа для обработки одномерных энергетических спектров

9

Программа для обработки одномерных энергетических спектров

нияу 1/СО/

Программа для обработки одномерных энергетических спектров

Дифференциальное сечение для

основного состояния ядра ¹¹В

Дифференциальное сечение для состояния

8.56 МэВ ядра ¹¹В

НИЯУ

 $\frac{d\sigma_{\alpha\beta}}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{K_{\beta}}{K_{\alpha}} |T_{\beta\alpha}|^2, \mu_i$ - приведенная масса канала i, $T_{\beta\alpha}$ - амплитуда перехода из канала β в канал α

Метод искаженных волн (DWBA)

$$T_{DWBA} = \int u_{b}^{(-)^{*}}(\mathbf{K}_{b}, \mathbf{r}_{b}) < \Psi_{b}\Psi_{B}|V|\Psi_{a}\Psi_{A} > u_{a}^{(+)}(\mathbf{K}_{a}, \mathbf{r}_{a})d\mathbf{r}_{a}d\mathbf{r}_{b},$$

где $u_{a}^{(+)}$ и $u_{b}^{(-)}$ - волновые функции рассеяния во входном и выходном каналах, Ψ_{i} – волновые функции соответствующих состояний ядер во входном и выходном каналах реакции, \mathbf{K}_{i} – относительный импульс в канале

 $= \langle \Psi_{\rm b} \Psi_{\rm B} | V | \Psi_{\rm a} \Psi_{\rm A} \rangle \sim I_{lsj}^{6Li7Li}(r) * I_{lsj}^{10B11B}(r) - формфактор реакции$

Входной канал: ⁷Li + ¹⁰В

Выходной канал: ⁶Li + ¹¹В (⁶Li + ¹²С)

Основное состояние ядра ¹¹В

Различные параметры оптической модели не влияют в пределах погрешности на описание главного максимума распределения

Состояние 8.56 МэВ ядра ¹¹В

Радиальные зависимости формфакторов

Интерпретация результатов

Наблюдается существенное различие в радиальной зависимости для основного состояния и состояния 8.56 МэВ ядра 11В.

В случае перехода { $^{11}B(8.56) \rightarrow n + {}^{10}B(g.s.)$ } и { $^{11}B(g.s.) \rightarrow n + {}^{10}B(g.s.)$ } вклад в форм-фактор вносит одна и та же волновая функция основного состояния ${}^{10}B$.

Можно предполагать, что именно волновая функция состояния 8.56 МэВ ядра ¹¹В ответственна за это различие.

Таким образом, волновая функция состояния 8.56 МэВ ядра ¹¹В имеет увеличенное пространственное распределение по сравнению с основным состоянием, что указывает на возможную кластерную структуру этого состояния

Результаты работы

Приведем основные результаты преддипломной практики:

- 1. Разработан набор программ для автоматизации обработки одномерных энергетических спектров.
- 2. Получены угловые распределения для основного состояния и состояния 8.56 МэВ ядра ¹¹В.
- 3. Проведен теоретический анализ полученных распределений.
- 4. Показано, что волновая функция состояния 8.56 МэВ имеет большее пространственное распределение по сравнению с волновой функцией основного состояния.

Это может являться дополнительным указанием на кластерную структуру состояния 8.56 МэВ ядра ¹¹В.

Материалы данного исследования будут представлены на конференции Ядро 2025. Устный доклад.

Национальный исследовательский ядерный университет

Спасибо за внимание!

Описание главного максимума для основного состояния:

Учет фоновых событий:

Приложение

Калибровочные кривые:

Рисунок 8. Этап работы программы. Пример выбора типа аппроксимации. Ось X - полная энергия вылетевших частиц, рассчитанная теоретически, ось Y - выбранные пользователем значения.

TOBCKNÝ

Интегральные характеристики упругого рассеяния ⁶Li +¹²C

Интегральные характеристики упругого рассеяния ⁶Li +¹²C

E _{lab.} , MeV	V _R , MeV	W _s , MeV	W _D , MeV	J _v , MeV fm ³	J _w , MeV fm ³	σ" mb
59.8	277	14	17	435	137	1361
54.0	280	13	15	439	121	1333
50.0	285	12	13.8	447	111	1317

KJP.

TOBCKNY

Интегральные характеристики потенциалов:

Товский

Интегральные характеристики потенциалов:

Результаты теоретического анализа

A+1(<i>I</i> ^p <i>T</i> , <i>E</i> '),	(l,j)	- <i>V</i> ,	<i>R</i> ,	<i>a</i> ,	$< r^{2} > 1/2$,	<i>NC</i> ² ,	NC ² theor,	NC^{2}_{exp} ,
nA(<i>I^pT,E'</i>)		MeV	fm	fm	fm	fm ⁻¹	fm ⁻¹	fm -1
¹¹ B(3/2 ⁻ 1/2,g.s.), n ¹⁰ B(3 ⁺ 0,g. s.)	(1, 3/2)	39.40	3.49	0.37	2.91	13.60	13.10 12.40	31.5019.7024.4022.0
¹¹ B(3/2 ⁻ 1/2,8.56.), n ¹⁰ B(3 ⁺ 0,g. s.)	(1, 3/2)	25.40	3.40	0.30	3.62	0.26	-	-